具有Caputo–Fabrizion和Riemann–Liouville分数阶导数的时空扩散偏微分方程的数值Fem解

IF 0.4 Q4 MATHEMATICS
Malika Boutiba, Selma Encadreur Baghli-Bendimerad, Michal Feckan
{"title":"具有Caputo–Fabrizion和Riemann–Liouville分数阶导数的时空扩散偏微分方程的数值Fem解","authors":"Malika Boutiba, Selma Encadreur Baghli-Bendimerad, Michal Feckan","doi":"10.2478/amsil-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we use the finite element method to solve the fractional space-time diffusion equation over finite fields. This equation is obtained from the standard diffusion equation by replacing the first temporal derivative with the new fractional derivative recently introduced by Caputo and Fabrizion and the second spatial derivative with the Riemann–Liouville fractional derivative. The existence and uniqueness of the numerical solution and the result of error estimation are given. Numerical examples are used to support the theoretical results.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numeric Fem’s Solution for Space-Time Diffusion Partial Differential Equations with Caputo–Fabrizion and Riemann–Liouville Fractional Order’s Derivatives\",\"authors\":\"Malika Boutiba, Selma Encadreur Baghli-Bendimerad, Michal Feckan\",\"doi\":\"10.2478/amsil-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we use the finite element method to solve the fractional space-time diffusion equation over finite fields. This equation is obtained from the standard diffusion equation by replacing the first temporal derivative with the new fractional derivative recently introduced by Caputo and Fabrizion and the second spatial derivative with the Riemann–Liouville fractional derivative. The existence and uniqueness of the numerical solution and the result of error estimation are given. Numerical examples are used to support the theoretical results.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文用有限元方法求解有限域上的分数阶时空扩散方程。该方程是从标准扩散方程中获得的,用Caputo和Fabrizion最近引入的新分数导数代替一阶时间导数,用Riemann-Liouville分数导数代替二阶空间导数。给出了数值解的存在唯一性和误差估计的结果。数值算例支持了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numeric Fem’s Solution for Space-Time Diffusion Partial Differential Equations with Caputo–Fabrizion and Riemann–Liouville Fractional Order’s Derivatives
Abstract In this paper, we use the finite element method to solve the fractional space-time diffusion equation over finite fields. This equation is obtained from the standard diffusion equation by replacing the first temporal derivative with the new fractional derivative recently introduced by Caputo and Fabrizion and the second spatial derivative with the Riemann–Liouville fractional derivative. The existence and uniqueness of the numerical solution and the result of error estimation are given. Numerical examples are used to support the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信