{"title":"正整数与2s和3s的组合","authors":"Orhan Dişkaya, H. Menken","doi":"10.1515/dema-2022-0227","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider compositions of positive integers with 2s and 3s. We see that these compositions lead us to results that involve Padovan numbers, and we give some tiling models of these compositions. Moreover, we examine some tiling models of the compositions related to the Padovan polynomials and prove some identities using the tiling model’s method. Next, we obtain various identities of the compositions of positive integers with 2s and 3s related to the Padovan numbers. The number of palindromic compositions of this type is determined, and some numerical arithmetic functions are defined. Finally, we provide a table that compares all of the results obtained from compositions of positive integers with 2s and 3s.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositions of positive integers with 2s and 3s\",\"authors\":\"Orhan Dişkaya, H. Menken\",\"doi\":\"10.1515/dema-2022-0227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we consider compositions of positive integers with 2s and 3s. We see that these compositions lead us to results that involve Padovan numbers, and we give some tiling models of these compositions. Moreover, we examine some tiling models of the compositions related to the Padovan polynomials and prove some identities using the tiling model’s method. Next, we obtain various identities of the compositions of positive integers with 2s and 3s related to the Padovan numbers. The number of palindromic compositions of this type is determined, and some numerical arithmetic functions are defined. Finally, we provide a table that compares all of the results obtained from compositions of positive integers with 2s and 3s.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0227\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0227","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this article, we consider compositions of positive integers with 2s and 3s. We see that these compositions lead us to results that involve Padovan numbers, and we give some tiling models of these compositions. Moreover, we examine some tiling models of the compositions related to the Padovan polynomials and prove some identities using the tiling model’s method. Next, we obtain various identities of the compositions of positive integers with 2s and 3s related to the Padovan numbers. The number of palindromic compositions of this type is determined, and some numerical arithmetic functions are defined. Finally, we provide a table that compares all of the results obtained from compositions of positive integers with 2s and 3s.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.