估计传染病有效繁殖数的非线性观测器

Q2 Mathematics
A. Hasan
{"title":"估计传染病有效繁殖数的非线性观测器","authors":"A. Hasan","doi":"10.1101/2021.03.02.21252730","DOIUrl":null,"url":null,"abstract":"In this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number (Rt) of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-Removed (SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The method is used to estimate Rt in Jakarta using epidemiological data during COVID-19 pandemic. If the observer gain is tuned properly, this approach produces similar result compared to existing approach such as Extended Kalman filter (EKF).","PeriodicalId":33129,"journal":{"name":"Communication in Biomathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Nonlinear Observer to Estimate the Effective Reproduction Number of Infectious Diseases\",\"authors\":\"A. Hasan\",\"doi\":\"10.1101/2021.03.02.21252730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number (Rt) of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-Removed (SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The method is used to estimate Rt in Jakarta using epidemiological data during COVID-19 pandemic. If the observer gain is tuned properly, this approach produces similar result compared to existing approach such as Extended Kalman filter (EKF).\",\"PeriodicalId\":33129,\"journal\":{\"name\":\"Communication in Biomathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communication in Biomathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.03.02.21252730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication in Biomathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.03.02.21252730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文设计了非线性观测器(NLO)来估计传染病的有效繁殖数(Rt)。NLO是根据离散时间增强的易感-感染-去除(SIR)模型设计的。通过求解线性矩阵不等式(LMI)获得观测器增益。该方法用于利用COVID-19大流行期间的流行病学数据估计雅加达的Rt。如果对观测器增益进行适当的调整,该方法与现有的扩展卡尔曼滤波(EKF)等方法相比,可以产生相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nonlinear Observer to Estimate the Effective Reproduction Number of Infectious Diseases
In this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number (Rt) of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-Removed (SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The method is used to estimate Rt in Jakarta using epidemiological data during COVID-19 pandemic. If the observer gain is tuned properly, this approach produces similar result compared to existing approach such as Extended Kalman filter (EKF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communication in Biomathematical Sciences
Communication in Biomathematical Sciences Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信