基于组合技术的多光谱影像土地覆盖分类

IF 0.3 Q4 GEOGRAPHY
Keerti Kulkarni, Vijaya P. A.
{"title":"基于组合技术的多光谱影像土地覆盖分类","authors":"Keerti Kulkarni, Vijaya P. A.","doi":"10.4018/ijagr.2021100102","DOIUrl":null,"url":null,"abstract":"The need for efficient planning of the land is exponentially increasing because of the unplanned human activities, especially in the urban areas. A land cover map gives a detailed report on temporal dynamics of a given geographical area. The land cover map can be obtained by using machine learning classifiers on the raw satellite images. In this work, the authors propose a combination method for the land cover classification. This method combines the outputs of two classifiers, namely, random forests (RF) and support vector machines (SVM), using Dempster-Shafer combination theory (DSCT), also called the theory of evidence. This combination is possible because of the inherent uncertainties associated with the output of each classifier. The experimental results indicate an improved accuracy (89.6%, kappa = 0.86 as versus accuracy of RF [87.31%, kappa = 0.83] and SVM [82.144%, kappa = 0.76]). The results are validated using the normalized difference vegetation index (NDVI), and the overall accuracy (OA) has been used as a comparison basis.","PeriodicalId":43062,"journal":{"name":"International Journal of Applied Geospatial Research","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Combination Technique for Land Cover Classification of Optical Multispectral Images\",\"authors\":\"Keerti Kulkarni, Vijaya P. A.\",\"doi\":\"10.4018/ijagr.2021100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for efficient planning of the land is exponentially increasing because of the unplanned human activities, especially in the urban areas. A land cover map gives a detailed report on temporal dynamics of a given geographical area. The land cover map can be obtained by using machine learning classifiers on the raw satellite images. In this work, the authors propose a combination method for the land cover classification. This method combines the outputs of two classifiers, namely, random forests (RF) and support vector machines (SVM), using Dempster-Shafer combination theory (DSCT), also called the theory of evidence. This combination is possible because of the inherent uncertainties associated with the output of each classifier. The experimental results indicate an improved accuracy (89.6%, kappa = 0.86 as versus accuracy of RF [87.31%, kappa = 0.83] and SVM [82.144%, kappa = 0.76]). The results are validated using the normalized difference vegetation index (NDVI), and the overall accuracy (OA) has been used as a comparison basis.\",\"PeriodicalId\":43062,\"journal\":{\"name\":\"International Journal of Applied Geospatial Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Geospatial Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijagr.2021100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Geospatial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijagr.2021100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 2

摘要

由于无计划的人类活动,特别是在城市地区,对有效规划土地的需求呈指数增长。土地覆盖图详细报告了某一地理区域的时间动态。在原始卫星图像上使用机器学习分类器可以获得土地覆盖图。本文提出了一种土地覆盖分类的组合方法。该方法利用Dempster-Shafer组合理论(DSCT),也称为证据理论,将随机森林(RF)和支持向量机(SVM)两个分类器的输出结合起来。这种组合是可能的,因为与每个分类器的输出相关的固有不确定性。实验结果表明,与RF [87.31%, kappa = 0.83]和SVM [82.144%, kappa = 0.76]相比,准确率提高了89.6%,kappa = 0.86]。采用归一化植被指数(NDVI)对结果进行验证,并以总体精度(OA)作为比较依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Combination Technique for Land Cover Classification of Optical Multispectral Images
The need for efficient planning of the land is exponentially increasing because of the unplanned human activities, especially in the urban areas. A land cover map gives a detailed report on temporal dynamics of a given geographical area. The land cover map can be obtained by using machine learning classifiers on the raw satellite images. In this work, the authors propose a combination method for the land cover classification. This method combines the outputs of two classifiers, namely, random forests (RF) and support vector machines (SVM), using Dempster-Shafer combination theory (DSCT), also called the theory of evidence. This combination is possible because of the inherent uncertainties associated with the output of each classifier. The experimental results indicate an improved accuracy (89.6%, kappa = 0.86 as versus accuracy of RF [87.31%, kappa = 0.83] and SVM [82.144%, kappa = 0.76]). The results are validated using the normalized difference vegetation index (NDVI), and the overall accuracy (OA) has been used as a comparison basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信