{"title":"加拿大高北极极端环境下沿海拔梯度的植物生殖物候","authors":"Zoe A. Panchen","doi":"10.1080/17550874.2022.2147804","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background The extreme environment of the Canadian High-Arctic is experiencing unprecedented climate change with temperatures rising at three times the global average. There is a compelling need to understand how the phenology of Arctic plants will respond. However, long-term High-Arctic phenology monitoring is challenging due to the region’s remoteness. Aim To predict phenological responses of Arctic plants to climate change using an elevation gradient with associated temperature gradient as a proxy for climate change. Methods Flowering and seed dispersal times of seven Arctic species were recorded along an elevation gradient on Ellesmere Island, Nunavut, Canada in 2015 and related to air temperature measured at plant height and growing day degree (GDD). Results Flowering and seed dispersal times were earliest at the warmest site. A significant relationship with temperature was observed in flowering times of five species and seed dispersal times of one species. Conspecifics experienced fewer GDD at peak flowering at the coldest site than at warmer sites. Conclusions Temperature gradient observations provide insights into phenology–temperature relationships that complement long-term monitoring and enhance our ability to understand the impacts of climate change in remote regions. However, potential species adaptation along the temperature gradient should be taken into account. This single summer of results should be viewed with caution.","PeriodicalId":49691,"journal":{"name":"Plant Ecology & Diversity","volume":"15 1","pages":"213 - 226"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Plant reproductive phenology along an elevation gradient in the extreme environment of the Canadian High Arctic\",\"authors\":\"Zoe A. Panchen\",\"doi\":\"10.1080/17550874.2022.2147804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Background The extreme environment of the Canadian High-Arctic is experiencing unprecedented climate change with temperatures rising at three times the global average. There is a compelling need to understand how the phenology of Arctic plants will respond. However, long-term High-Arctic phenology monitoring is challenging due to the region’s remoteness. Aim To predict phenological responses of Arctic plants to climate change using an elevation gradient with associated temperature gradient as a proxy for climate change. Methods Flowering and seed dispersal times of seven Arctic species were recorded along an elevation gradient on Ellesmere Island, Nunavut, Canada in 2015 and related to air temperature measured at plant height and growing day degree (GDD). Results Flowering and seed dispersal times were earliest at the warmest site. A significant relationship with temperature was observed in flowering times of five species and seed dispersal times of one species. Conspecifics experienced fewer GDD at peak flowering at the coldest site than at warmer sites. Conclusions Temperature gradient observations provide insights into phenology–temperature relationships that complement long-term monitoring and enhance our ability to understand the impacts of climate change in remote regions. However, potential species adaptation along the temperature gradient should be taken into account. This single summer of results should be viewed with caution.\",\"PeriodicalId\":49691,\"journal\":{\"name\":\"Plant Ecology & Diversity\",\"volume\":\"15 1\",\"pages\":\"213 - 226\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Ecology & Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17550874.2022.2147804\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Ecology & Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17550874.2022.2147804","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Plant reproductive phenology along an elevation gradient in the extreme environment of the Canadian High Arctic
ABSTRACT Background The extreme environment of the Canadian High-Arctic is experiencing unprecedented climate change with temperatures rising at three times the global average. There is a compelling need to understand how the phenology of Arctic plants will respond. However, long-term High-Arctic phenology monitoring is challenging due to the region’s remoteness. Aim To predict phenological responses of Arctic plants to climate change using an elevation gradient with associated temperature gradient as a proxy for climate change. Methods Flowering and seed dispersal times of seven Arctic species were recorded along an elevation gradient on Ellesmere Island, Nunavut, Canada in 2015 and related to air temperature measured at plant height and growing day degree (GDD). Results Flowering and seed dispersal times were earliest at the warmest site. A significant relationship with temperature was observed in flowering times of five species and seed dispersal times of one species. Conspecifics experienced fewer GDD at peak flowering at the coldest site than at warmer sites. Conclusions Temperature gradient observations provide insights into phenology–temperature relationships that complement long-term monitoring and enhance our ability to understand the impacts of climate change in remote regions. However, potential species adaptation along the temperature gradient should be taken into account. This single summer of results should be viewed with caution.
期刊介绍:
Plant Ecology and Diversity is an international journal for communicating results and novel ideas in plant science, in print and on-line, six times a year. All areas of plant biology relating to ecology, evolution and diversity are of interest, including those which explicitly deal with today''s highly topical themes, such as biodiversity, conservation and global change. We consider submissions that address fundamental questions which are pertinent to contemporary plant science. Articles concerning extreme environments world-wide are particularly welcome.
Plant Ecology and Diversity considers for publication original research articles, short communications, reviews, and scientific correspondence that explore thought-provoking ideas.
To aid redressing ‘publication bias’ the journal is unique in reporting, in the form of short communications, ‘negative results’ and ‘repeat experiments’ that test ecological theories experimentally, in theoretically flawless and methodologically sound papers. Research reviews and method papers, are also encouraged.
Plant Ecology & Diversity publishes high-quality and topical research that demonstrates solid scholarship. As such, the journal does not publish purely descriptive papers. Submissions are required to focus on research topics that are broad in their scope and thus provide new insights and contribute to theory. The original research should address clear hypotheses that test theory or questions and offer new insights on topics of interest to an international readership.