N. Rcheulishvili, Dimitri Papukashvili, Y. Shakir, Yulin Deng, Ying Zhang
{"title":"从中国空间站组件洁净室表面分离并用16S rRNA/ITS测序和MALDI-TOF MS鉴定的耐酸铝微生物","authors":"N. Rcheulishvili, Dimitri Papukashvili, Y. Shakir, Yulin Deng, Ying Zhang","doi":"10.1017/S1473550420000427","DOIUrl":null,"url":null,"abstract":"Abstract Corrosion of aluminium (Al) is a potential problem for spacecraft as this metal is used for various mechanical parts due to its strength, durability, etc. However, it can be corroded by certain factors including microbes. Studying microbes which can be implicated in microbiologically influenced corrosion (MIC) due to their extremophilic nature is of vital importance. In this current study, Al and acid-tolerant microbes were isolated from the samples of China space station assembly cleanroom surfaces; acidic environments can accelerate the corrosion process on metal surfaces. Nine bacterial and 10 fungal strains were identified with 16S ribosomal RNA gene/internal transcribed spacer region sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The dominant bacteria were of Bacillus, fungi of Penicillium and Aspergillus genera. Knowing the microbes which may be conveyed from the cleanrooms to the space stations with a potential capacity of Al degradation is important for long-term maintenance of station components. This study might aid in designing further researches of the aforementioned microorganisms and, therefore, contribute to the prevention of MIC.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":"20 1","pages":"133 - 141"},"PeriodicalIF":1.7000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1473550420000427","citationCount":"1","resultStr":"{\"title\":\"Acid and aluminium-tolerant microbes isolated from China space station assembly cleanroom surfaces and identified by 16S rRNA/ITS sequencing and MALDI-TOF MS\",\"authors\":\"N. Rcheulishvili, Dimitri Papukashvili, Y. Shakir, Yulin Deng, Ying Zhang\",\"doi\":\"10.1017/S1473550420000427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Corrosion of aluminium (Al) is a potential problem for spacecraft as this metal is used for various mechanical parts due to its strength, durability, etc. However, it can be corroded by certain factors including microbes. Studying microbes which can be implicated in microbiologically influenced corrosion (MIC) due to their extremophilic nature is of vital importance. In this current study, Al and acid-tolerant microbes were isolated from the samples of China space station assembly cleanroom surfaces; acidic environments can accelerate the corrosion process on metal surfaces. Nine bacterial and 10 fungal strains were identified with 16S ribosomal RNA gene/internal transcribed spacer region sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The dominant bacteria were of Bacillus, fungi of Penicillium and Aspergillus genera. Knowing the microbes which may be conveyed from the cleanrooms to the space stations with a potential capacity of Al degradation is important for long-term maintenance of station components. This study might aid in designing further researches of the aforementioned microorganisms and, therefore, contribute to the prevention of MIC.\",\"PeriodicalId\":13879,\"journal\":{\"name\":\"International Journal of Astrobiology\",\"volume\":\"20 1\",\"pages\":\"133 - 141\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1473550420000427\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/S1473550420000427\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/S1473550420000427","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Acid and aluminium-tolerant microbes isolated from China space station assembly cleanroom surfaces and identified by 16S rRNA/ITS sequencing and MALDI-TOF MS
Abstract Corrosion of aluminium (Al) is a potential problem for spacecraft as this metal is used for various mechanical parts due to its strength, durability, etc. However, it can be corroded by certain factors including microbes. Studying microbes which can be implicated in microbiologically influenced corrosion (MIC) due to their extremophilic nature is of vital importance. In this current study, Al and acid-tolerant microbes were isolated from the samples of China space station assembly cleanroom surfaces; acidic environments can accelerate the corrosion process on metal surfaces. Nine bacterial and 10 fungal strains were identified with 16S ribosomal RNA gene/internal transcribed spacer region sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The dominant bacteria were of Bacillus, fungi of Penicillium and Aspergillus genera. Knowing the microbes which may be conveyed from the cleanrooms to the space stations with a potential capacity of Al degradation is important for long-term maintenance of station components. This study might aid in designing further researches of the aforementioned microorganisms and, therefore, contribute to the prevention of MIC.
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.