{"title":"基于神经网络的车辆悬架运动学与顺应性验证及转向运动学优化","authors":"Gurur Ağaki̇şi̇, F. Öztürk","doi":"10.5755/j02.mech.31983","DOIUrl":null,"url":null,"abstract":"Physical and virtual K&C analyses are performed to achieve the vehicle dynamics targets by finding the optimum variables such as the position of hardpoints or stiffnesses of bushings. However, finding appropriate design variables that meet all the aims is challenging. This paper evaluates a hardpoint optimization approach to attain suspension K&C characteristic objectives with the design of experiments, neural networks, and genetic algorithm, based on a reference compact-sized prototype vehicle. The MBD model correlation is provided to optimize the hardpoints to improve the vehicle's steering kinematics concerning Ackerman error and camber angle variation that are out of target in baseline suspension. The results showed that NN based optimization strategy to define the hardpoints has significantly improved targeted characteristics compared to conventional response surface methods in the limited design space.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematics & Compliance Validation of a Vehicle Suspension and Steering Kinematics Optimization Using Neural Networks\",\"authors\":\"Gurur Ağaki̇şi̇, F. Öztürk\",\"doi\":\"10.5755/j02.mech.31983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical and virtual K&C analyses are performed to achieve the vehicle dynamics targets by finding the optimum variables such as the position of hardpoints or stiffnesses of bushings. However, finding appropriate design variables that meet all the aims is challenging. This paper evaluates a hardpoint optimization approach to attain suspension K&C characteristic objectives with the design of experiments, neural networks, and genetic algorithm, based on a reference compact-sized prototype vehicle. The MBD model correlation is provided to optimize the hardpoints to improve the vehicle's steering kinematics concerning Ackerman error and camber angle variation that are out of target in baseline suspension. The results showed that NN based optimization strategy to define the hardpoints has significantly improved targeted characteristics compared to conventional response surface methods in the limited design space.\",\"PeriodicalId\":54741,\"journal\":{\"name\":\"Mechanika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.mech.31983\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.mech.31983","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Kinematics & Compliance Validation of a Vehicle Suspension and Steering Kinematics Optimization Using Neural Networks
Physical and virtual K&C analyses are performed to achieve the vehicle dynamics targets by finding the optimum variables such as the position of hardpoints or stiffnesses of bushings. However, finding appropriate design variables that meet all the aims is challenging. This paper evaluates a hardpoint optimization approach to attain suspension K&C characteristic objectives with the design of experiments, neural networks, and genetic algorithm, based on a reference compact-sized prototype vehicle. The MBD model correlation is provided to optimize the hardpoints to improve the vehicle's steering kinematics concerning Ackerman error and camber angle variation that are out of target in baseline suspension. The results showed that NN based optimization strategy to define the hardpoints has significantly improved targeted characteristics compared to conventional response surface methods in the limited design space.
期刊介绍:
The journal is publishing scientific papers dealing with the following problems:
Mechanics of Solid Bodies;
Mechanics of Fluids and Gases;
Dynamics of Mechanical Systems;
Design and Optimization of Mechanical Systems;
Mechanical Technologies.