G. Alleva, G. Arbia, P. D. Falorsi, V. Nardelli, A. Zuliani
{"title":"提高SARS-CoV-2疫情关键参数估计效率的空间抽样设计","authors":"G. Alleva, G. Arbia, P. D. Falorsi, V. Nardelli, A. Zuliani","doi":"10.2478/jos-2022-0019","DOIUrl":null,"url":null,"abstract":"Abstract Given the urgent informational needs connected with the diffusion of infection with regard to the COVID-19 pandemic, in this article, we propose a sampling design for building a continuous-time surveillance system. Compared with other observational strategies, the proposed method has three important elements of strength and originality: (1) it aims to provide a snapshot of the phenomenon at a single moment in time, and it is designed to be a continuous survey that is repeated in several waves over time, taking different target variables during different stages of the development of the epidemic into account; (2) the statistical optimality properties of the proposed estimators are formally derived and tested with a Monte Carlo experiment; and (3) it is rapidly operational as this property is required by the emergency connected with the diffusion of the virus. The sampling design is thought to be designed with the diffusion of SAR-CoV-2 in Italy during the spring of 2020 in mind. However, it is very general, and we are confident that it can be easily extended to other geographical areas and to possible future epidemic outbreaks. Formal proofs and a Monte Carlo exercise highlight that the estimators are unbiased and have higher efficiency than the simple random sampling scheme.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"38 1","pages":"367 - 398"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatial Sampling Design to Improve the Efficiency of the Estimation of the Critical Parameters of the SARS-CoV-2 Epidemic\",\"authors\":\"G. Alleva, G. Arbia, P. D. Falorsi, V. Nardelli, A. Zuliani\",\"doi\":\"10.2478/jos-2022-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given the urgent informational needs connected with the diffusion of infection with regard to the COVID-19 pandemic, in this article, we propose a sampling design for building a continuous-time surveillance system. Compared with other observational strategies, the proposed method has three important elements of strength and originality: (1) it aims to provide a snapshot of the phenomenon at a single moment in time, and it is designed to be a continuous survey that is repeated in several waves over time, taking different target variables during different stages of the development of the epidemic into account; (2) the statistical optimality properties of the proposed estimators are formally derived and tested with a Monte Carlo experiment; and (3) it is rapidly operational as this property is required by the emergency connected with the diffusion of the virus. The sampling design is thought to be designed with the diffusion of SAR-CoV-2 in Italy during the spring of 2020 in mind. However, it is very general, and we are confident that it can be easily extended to other geographical areas and to possible future epidemic outbreaks. Formal proofs and a Monte Carlo exercise highlight that the estimators are unbiased and have higher efficiency than the simple random sampling scheme.\",\"PeriodicalId\":51092,\"journal\":{\"name\":\"Journal of Official Statistics\",\"volume\":\"38 1\",\"pages\":\"367 - 398\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Official Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/jos-2022-0019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2022-0019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Spatial Sampling Design to Improve the Efficiency of the Estimation of the Critical Parameters of the SARS-CoV-2 Epidemic
Abstract Given the urgent informational needs connected with the diffusion of infection with regard to the COVID-19 pandemic, in this article, we propose a sampling design for building a continuous-time surveillance system. Compared with other observational strategies, the proposed method has three important elements of strength and originality: (1) it aims to provide a snapshot of the phenomenon at a single moment in time, and it is designed to be a continuous survey that is repeated in several waves over time, taking different target variables during different stages of the development of the epidemic into account; (2) the statistical optimality properties of the proposed estimators are formally derived and tested with a Monte Carlo experiment; and (3) it is rapidly operational as this property is required by the emergency connected with the diffusion of the virus. The sampling design is thought to be designed with the diffusion of SAR-CoV-2 in Italy during the spring of 2020 in mind. However, it is very general, and we are confident that it can be easily extended to other geographical areas and to possible future epidemic outbreaks. Formal proofs and a Monte Carlo exercise highlight that the estimators are unbiased and have higher efficiency than the simple random sampling scheme.
期刊介绍:
JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.