利用机器学习方法从学生在线学习行为预测影响策略的说服力

IF 4 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
F. Orji, Julita Vassileva
{"title":"利用机器学习方法从学生在线学习行为预测影响策略的说服力","authors":"F. Orji, Julita Vassileva","doi":"10.1177/07356331231178873","DOIUrl":null,"url":null,"abstract":"There is a dearth of knowledge on how persuasiveness of influence strategies affects students’ behaviours when using online educational systems. Persuasiveness is a term used in describing a system’s capability to motivate desired behaviour. Most existing approaches for assessing the persuasiveness of a system are based on subjective measures (questionnaires) which are static and do not allow for automatic measurement of systems persuasiveness at run-time. Being able to automatically predict a system’s persuasiveness at run-time is essential for dynamic and continuous adaptation of the system to reflect each individual user’s state. In this study, we investigate the links between persuasiveness of influence strategies and students’ behaviour in an online educational system for a course. We implemented and tested Machine Learning (ML) classification models to determine whether persuasiveness had a significant impact on students’ usage of a learning system. Our findings revealed that students learning data can be applied to predict the persuasiveness of different influence strategies. The implications are that by using machine learning classifiers powered with learning sessions data, online educational systems would be able to automatically adapt their persuasive strategies to improve students’ engagement and learning.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Persuasiveness of Influence Strategies From Student Online Learning Behaviour Using Machine Learning Methods\",\"authors\":\"F. Orji, Julita Vassileva\",\"doi\":\"10.1177/07356331231178873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a dearth of knowledge on how persuasiveness of influence strategies affects students’ behaviours when using online educational systems. Persuasiveness is a term used in describing a system’s capability to motivate desired behaviour. Most existing approaches for assessing the persuasiveness of a system are based on subjective measures (questionnaires) which are static and do not allow for automatic measurement of systems persuasiveness at run-time. Being able to automatically predict a system’s persuasiveness at run-time is essential for dynamic and continuous adaptation of the system to reflect each individual user’s state. In this study, we investigate the links between persuasiveness of influence strategies and students’ behaviour in an online educational system for a course. We implemented and tested Machine Learning (ML) classification models to determine whether persuasiveness had a significant impact on students’ usage of a learning system. Our findings revealed that students learning data can be applied to predict the persuasiveness of different influence strategies. The implications are that by using machine learning classifiers powered with learning sessions data, online educational systems would be able to automatically adapt their persuasive strategies to improve students’ engagement and learning.\",\"PeriodicalId\":47865,\"journal\":{\"name\":\"Journal of Educational Computing Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational Computing Research\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1177/07356331231178873\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1177/07356331231178873","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

在使用在线教育系统时,影响策略的说服力如何影响学生的行为,这方面的知识缺乏。说服力是一个术语,用于描述系统激发期望行为的能力。评估系统说服力的大多数现有方法都是基于静态的主观测量(问卷),并且不允许在运行时自动测量系统说服力。能够在运行时自动预测系统的说服力对于系统的动态和连续适应以反映每个单独用户的状态是必不可少的。在本研究中,我们调查了影响策略的说服力与在线课程教育系统中学生行为之间的联系。我们实施并测试了机器学习(ML)分类模型,以确定说服力是否对学生使用学习系统有重大影响。我们的研究结果表明,学生的学习数据可以用来预测不同影响策略的说服力。这意味着,通过使用由学习会话数据驱动的机器学习分类器,在线教育系统将能够自动调整他们的说服策略,以提高学生的参与度和学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Persuasiveness of Influence Strategies From Student Online Learning Behaviour Using Machine Learning Methods
There is a dearth of knowledge on how persuasiveness of influence strategies affects students’ behaviours when using online educational systems. Persuasiveness is a term used in describing a system’s capability to motivate desired behaviour. Most existing approaches for assessing the persuasiveness of a system are based on subjective measures (questionnaires) which are static and do not allow for automatic measurement of systems persuasiveness at run-time. Being able to automatically predict a system’s persuasiveness at run-time is essential for dynamic and continuous adaptation of the system to reflect each individual user’s state. In this study, we investigate the links between persuasiveness of influence strategies and students’ behaviour in an online educational system for a course. We implemented and tested Machine Learning (ML) classification models to determine whether persuasiveness had a significant impact on students’ usage of a learning system. Our findings revealed that students learning data can be applied to predict the persuasiveness of different influence strategies. The implications are that by using machine learning classifiers powered with learning sessions data, online educational systems would be able to automatically adapt their persuasive strategies to improve students’ engagement and learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Educational Computing Research
Journal of Educational Computing Research EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
11.90
自引率
6.20%
发文量
69
期刊介绍: The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信