Yang Wang, Junling Wang, Wanli Zhao, Pengcheng Ji, Shiqing Cheng, Haiyang Yu
{"title":"气井递减率分析中天然裂缝性储层的显式天然气原地确定","authors":"Yang Wang, Junling Wang, Wanli Zhao, Pengcheng Ji, Shiqing Cheng, Haiyang Yu","doi":"10.46690/ager.2023.08.05","DOIUrl":null,"url":null,"abstract":": Naturally fractured gas reservoirs have contributed significantly to global gas reserves and production. The classical gas-well decline analysis relies largely on Arps’ empirical decline models, or modern production decline analysis associating with pseudo-variables. The explicit original gas in place determination methodology is extended from homogeneous reservoir to naturally fractured reservoir under constant or variable bottom-hole pressure conditions in gas-well rate decline analysis. Then, the relationship between gas flow rate and average reservoir pseudo-pressure in the boundary-dominated flow period is re-derived. This formula is in the same format with the equation for homogeneous reservoir by due to the introduction of a new productivity index parameter that captures the inter-porosity flow between fracture and matrix in the natural fractured reservoir. The proposed step-by-step procedures are applied here, which enable the estimation of decline exponent and the explicit and straightforward determination of the original gas in place without any iterative calculations. Four simulated cases prove that our methodology can be successfully used in heterogeneous naturally fractured reservoirs with irregular boundary under constant or variable bottom-hole pressure conditions. 1.","PeriodicalId":36335,"journal":{"name":"Advances in Geo-Energy Research","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit original gas in place determination of naturally fractured reservoirs in gas well rate decline analysis\",\"authors\":\"Yang Wang, Junling Wang, Wanli Zhao, Pengcheng Ji, Shiqing Cheng, Haiyang Yu\",\"doi\":\"10.46690/ager.2023.08.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Naturally fractured gas reservoirs have contributed significantly to global gas reserves and production. The classical gas-well decline analysis relies largely on Arps’ empirical decline models, or modern production decline analysis associating with pseudo-variables. The explicit original gas in place determination methodology is extended from homogeneous reservoir to naturally fractured reservoir under constant or variable bottom-hole pressure conditions in gas-well rate decline analysis. Then, the relationship between gas flow rate and average reservoir pseudo-pressure in the boundary-dominated flow period is re-derived. This formula is in the same format with the equation for homogeneous reservoir by due to the introduction of a new productivity index parameter that captures the inter-porosity flow between fracture and matrix in the natural fractured reservoir. The proposed step-by-step procedures are applied here, which enable the estimation of decline exponent and the explicit and straightforward determination of the original gas in place without any iterative calculations. Four simulated cases prove that our methodology can be successfully used in heterogeneous naturally fractured reservoirs with irregular boundary under constant or variable bottom-hole pressure conditions. 1.\",\"PeriodicalId\":36335,\"journal\":{\"name\":\"Advances in Geo-Energy Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geo-Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46690/ager.2023.08.05\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geo-Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/ager.2023.08.05","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Explicit original gas in place determination of naturally fractured reservoirs in gas well rate decline analysis
: Naturally fractured gas reservoirs have contributed significantly to global gas reserves and production. The classical gas-well decline analysis relies largely on Arps’ empirical decline models, or modern production decline analysis associating with pseudo-variables. The explicit original gas in place determination methodology is extended from homogeneous reservoir to naturally fractured reservoir under constant or variable bottom-hole pressure conditions in gas-well rate decline analysis. Then, the relationship between gas flow rate and average reservoir pseudo-pressure in the boundary-dominated flow period is re-derived. This formula is in the same format with the equation for homogeneous reservoir by due to the introduction of a new productivity index parameter that captures the inter-porosity flow between fracture and matrix in the natural fractured reservoir. The proposed step-by-step procedures are applied here, which enable the estimation of decline exponent and the explicit and straightforward determination of the original gas in place without any iterative calculations. Four simulated cases prove that our methodology can be successfully used in heterogeneous naturally fractured reservoirs with irregular boundary under constant or variable bottom-hole pressure conditions. 1.
Advances in Geo-Energy Researchnatural geo-energy (oil, gas, coal geothermal, and gas hydrate)-Geotechnical Engineering and Engineering Geology
CiteScore
12.30
自引率
8.50%
发文量
63
审稿时长
2~3 weeks
期刊介绍:
Advances in Geo-Energy Research is an interdisciplinary and international periodical committed to fostering interaction and multidisciplinary collaboration among scientific communities worldwide, spanning both industry and academia. Our journal serves as a platform for researchers actively engaged in the diverse fields of geo-energy systems, providing an academic medium for the exchange of knowledge and ideas. Join us in advancing the frontiers of geo-energy research through collaboration and shared expertise.