LCDT-M:云环境中使用SDN的日志集群DDoS树缓解框架

Q1 Mathematics
Jeba Praba. J., R. Sridaran
{"title":"LCDT-M:云环境中使用SDN的日志集群DDoS树缓解框架","authors":"Jeba Praba. J., R. Sridaran","doi":"10.5815/ijcnis.2023.02.05","DOIUrl":null,"url":null,"abstract":"In the cloud computing platform, DDoS (Distributed Denial-of-service) attacks are one of the most commonly occurring attacks. Research studies on DDoS mitigation rarely considered the data shift problem in real-time implementation. Concurrently, existing studies have attempted to perform DDoS attack detection. Nevertheless, they have been deficient regarding the detection rate. Hence, the proposed study proposes a novel DDoS mitigation scheme using LCDT-M (Log-Cluster DDoS Tree Mitigation) framework for the hybrid cloud environment. LCDT-M detects and mitigates DDoS attacks in the Software-Defined Network (SDN) based cloud environment. The LCDT-M comprises three algorithms: GFS (Greedy Feature Selection), TLMC (Two Log Mean Clustering), and DM (Detection-Mitigation) based on DT (Decision Tree) to optimize the detection of DDoS attacks along with mitigation in SDN. The study simulated the defined cloud environment and considered the data shift problem during the real-time implementation. As a result, the proposed architecture achieved an accuracy of about 99.83%, confirming its superior performance.","PeriodicalId":36488,"journal":{"name":"International Journal of Computer Network and Information Security","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LCDT-M: Log-Cluster DDoS Tree Mitigation Framework Using SDN in the Cloud Environment\",\"authors\":\"Jeba Praba. J., R. Sridaran\",\"doi\":\"10.5815/ijcnis.2023.02.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the cloud computing platform, DDoS (Distributed Denial-of-service) attacks are one of the most commonly occurring attacks. Research studies on DDoS mitigation rarely considered the data shift problem in real-time implementation. Concurrently, existing studies have attempted to perform DDoS attack detection. Nevertheless, they have been deficient regarding the detection rate. Hence, the proposed study proposes a novel DDoS mitigation scheme using LCDT-M (Log-Cluster DDoS Tree Mitigation) framework for the hybrid cloud environment. LCDT-M detects and mitigates DDoS attacks in the Software-Defined Network (SDN) based cloud environment. The LCDT-M comprises three algorithms: GFS (Greedy Feature Selection), TLMC (Two Log Mean Clustering), and DM (Detection-Mitigation) based on DT (Decision Tree) to optimize the detection of DDoS attacks along with mitigation in SDN. The study simulated the defined cloud environment and considered the data shift problem during the real-time implementation. As a result, the proposed architecture achieved an accuracy of about 99.83%, confirming its superior performance.\",\"PeriodicalId\":36488,\"journal\":{\"name\":\"International Journal of Computer Network and Information Security\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Network and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijcnis.2023.02.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Network and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijcnis.2023.02.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在云计算平台中,DDoS (Distributed Denial-of-service)攻击是最常见的攻击之一。DDoS缓解研究很少考虑实时实施中的数据转移问题。同时,已有研究尝试进行DDoS攻击检测。然而,他们在检出率方面还存在不足。因此,本研究提出了一种新的DDoS缓解方案,该方案使用LCDT-M(日志集群DDoS树缓解)框架用于混合云环境。LCDT-M在基于SDN (Software-Defined Network)的云环境中检测和缓解DDoS攻击。LCDT-M包括GFS (Greedy Feature Selection)、TLMC (Two Log Mean Clustering)和基于DT (Decision Tree)的DM (detection - mitigation)三种算法,以优化SDN中DDoS攻击的检测和缓解。研究模拟了定义的云环境,并考虑了实时实施过程中的数据迁移问题。结果表明,该体系结构的准确率达到了99.83%左右,证明了其优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LCDT-M: Log-Cluster DDoS Tree Mitigation Framework Using SDN in the Cloud Environment
In the cloud computing platform, DDoS (Distributed Denial-of-service) attacks are one of the most commonly occurring attacks. Research studies on DDoS mitigation rarely considered the data shift problem in real-time implementation. Concurrently, existing studies have attempted to perform DDoS attack detection. Nevertheless, they have been deficient regarding the detection rate. Hence, the proposed study proposes a novel DDoS mitigation scheme using LCDT-M (Log-Cluster DDoS Tree Mitigation) framework for the hybrid cloud environment. LCDT-M detects and mitigates DDoS attacks in the Software-Defined Network (SDN) based cloud environment. The LCDT-M comprises three algorithms: GFS (Greedy Feature Selection), TLMC (Two Log Mean Clustering), and DM (Detection-Mitigation) based on DT (Decision Tree) to optimize the detection of DDoS attacks along with mitigation in SDN. The study simulated the defined cloud environment and considered the data shift problem during the real-time implementation. As a result, the proposed architecture achieved an accuracy of about 99.83%, confirming its superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信