M导数共振Davey-Stewartson方程的解析解

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
H. Ismael, S. S. Atas, H. Bulut, M. Osman
{"title":"M导数共振Davey-Stewartson方程的解析解","authors":"H. Ismael, S. S. Atas, H. Bulut, M. Osman","doi":"10.1142/s0217984921504558","DOIUrl":null,"url":null,"abstract":"In this paper, the (2+1)-dimensional resonant Davey–Stewartson equations are solved by using two methods; namely, [Formula: see text]-expansion and [Formula: see text]-expansion methods. A wave transform is used to convert the (2+1)-dimensional resonant Davey–Stewartson (RDS) equations with M-derivative into a system of nonlinear ordinary differential equations. Different forms of solutions, such as dark, bright, singular and periodic singular solutions are successfully constructed. The obtained solutions are plotted in 3D for both M- derivative and classical derivative to more understand the effect of M-derivative on the studied equation.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analytical solutions to the M-derivative resonant Davey–Stewartson equations\",\"authors\":\"H. Ismael, S. S. Atas, H. Bulut, M. Osman\",\"doi\":\"10.1142/s0217984921504558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the (2+1)-dimensional resonant Davey–Stewartson equations are solved by using two methods; namely, [Formula: see text]-expansion and [Formula: see text]-expansion methods. A wave transform is used to convert the (2+1)-dimensional resonant Davey–Stewartson (RDS) equations with M-derivative into a system of nonlinear ordinary differential equations. Different forms of solutions, such as dark, bright, singular and periodic singular solutions are successfully constructed. The obtained solutions are plotted in 3D for both M- derivative and classical derivative to more understand the effect of M-derivative on the studied equation.\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984921504558\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984921504558","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 13

摘要

本文采用两种方法求解(2+1)维谐振Davey-Stewartson方程;即[公式:见文]-展开法和[公式:见文]-展开法。利用波变换将(2+1)维m阶谐振Davey-Stewartson (RDS)方程转化为非线性常微分方程组。成功地构造了不同形式的解,如暗解、亮解、奇异解和周期奇异解。为了更好地理解M-导数对所研究方程的影响,将M-导数和经典导数的解绘制成三维图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical solutions to the M-derivative resonant Davey–Stewartson equations
In this paper, the (2+1)-dimensional resonant Davey–Stewartson equations are solved by using two methods; namely, [Formula: see text]-expansion and [Formula: see text]-expansion methods. A wave transform is used to convert the (2+1)-dimensional resonant Davey–Stewartson (RDS) equations with M-derivative into a system of nonlinear ordinary differential equations. Different forms of solutions, such as dark, bright, singular and periodic singular solutions are successfully constructed. The obtained solutions are plotted in 3D for both M- derivative and classical derivative to more understand the effect of M-derivative on the studied equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信