{"title":"一般曲线上Brill-Noether变种的Betti数","authors":"Camilla Felisetti, C. Fontanari","doi":"10.4171/rlm/964","DOIUrl":null,"url":null,"abstract":"We compute the integral cohomology groups of the smooth Brill-Noether varieties G d (C), parametrizing linear series of degree d and dimension exactly r on a general curve C. As an application, we determine the whole intersection cohomology of the singular Brill-Noether loci W r d (C), parametrizing complete linear series on C of degree d and dimension at least r.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betti numbers of Brill–Noether varieties on a general curve\",\"authors\":\"Camilla Felisetti, C. Fontanari\",\"doi\":\"10.4171/rlm/964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the integral cohomology groups of the smooth Brill-Noether varieties G d (C), parametrizing linear series of degree d and dimension exactly r on a general curve C. As an application, we determine the whole intersection cohomology of the singular Brill-Noether loci W r d (C), parametrizing complete linear series on C of degree d and dimension at least r.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/964\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/964","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们计算了一般曲线C上光滑Brill-Noether变体G d (C)的整上同调群,并将d次、维数为r的线性序列参数化,作为应用,我们确定了奇异Brill-Noether轨迹W r d (C)的整交上同调,确定了C上d次、维数至少为r的完全线性序列参数化。
Betti numbers of Brill–Noether varieties on a general curve
We compute the integral cohomology groups of the smooth Brill-Noether varieties G d (C), parametrizing linear series of degree d and dimension exactly r on a general curve C. As an application, we determine the whole intersection cohomology of the singular Brill-Noether loci W r d (C), parametrizing complete linear series on C of degree d and dimension at least r.
期刊介绍:
The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.