{"title":"动脉粥样硬化炎症过程的数学模型","authors":"G. Abi Younes, N. El Khatib","doi":"10.1051/mmnp/2022004","DOIUrl":null,"url":null,"abstract":"In this paper we study the early stages of atherosclerosis via a mathematical model of partial differential equations of reaction-diffusion type. The model includes several key species and identifies endothelial hyperpermeability, believed to be a precursor on the onset of atherosclerosis. We reduce the system to a monotone system and provide a biological interpretation for the stability analysis according to endothelial functionality. We investigate as well the existence of solutions of traveling waves type along with numerical simulations. The obtained results are in good agreement with current biological knowledge. Likewise, they confirm and generalize results of mathematical models previously performed in literature. Then, we study the non monotone reduced model and prove the existence of perturbed solutions and perturbed waves, particularly in the bistable case. Finally, we consider the complete model proposed initially, perform numerical simulations and provide more specific results. We study the consistency between the reduced and complete models for a certain range of parameters. We elaborate bifurcation diagrams showing the evolution of inflammation upon endothelial permeability and LDL accumulation. We show that the regulation of atherosclerosis progression is mediated by anti-inflammatory responses that, up to certain extent, lead to plaque regression.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Mathematical Modeling of Inflammatory Processes of Atherosclerosis\",\"authors\":\"G. Abi Younes, N. El Khatib\",\"doi\":\"10.1051/mmnp/2022004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the early stages of atherosclerosis via a mathematical model of partial differential equations of reaction-diffusion type. The model includes several key species and identifies endothelial hyperpermeability, believed to be a precursor on the onset of atherosclerosis. We reduce the system to a monotone system and provide a biological interpretation for the stability analysis according to endothelial functionality. We investigate as well the existence of solutions of traveling waves type along with numerical simulations. The obtained results are in good agreement with current biological knowledge. Likewise, they confirm and generalize results of mathematical models previously performed in literature. Then, we study the non monotone reduced model and prove the existence of perturbed solutions and perturbed waves, particularly in the bistable case. Finally, we consider the complete model proposed initially, perform numerical simulations and provide more specific results. We study the consistency between the reduced and complete models for a certain range of parameters. We elaborate bifurcation diagrams showing the evolution of inflammation upon endothelial permeability and LDL accumulation. We show that the regulation of atherosclerosis progression is mediated by anti-inflammatory responses that, up to certain extent, lead to plaque regression.\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2022004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Mathematical Modeling of Inflammatory Processes of Atherosclerosis
In this paper we study the early stages of atherosclerosis via a mathematical model of partial differential equations of reaction-diffusion type. The model includes several key species and identifies endothelial hyperpermeability, believed to be a precursor on the onset of atherosclerosis. We reduce the system to a monotone system and provide a biological interpretation for the stability analysis according to endothelial functionality. We investigate as well the existence of solutions of traveling waves type along with numerical simulations. The obtained results are in good agreement with current biological knowledge. Likewise, they confirm and generalize results of mathematical models previously performed in literature. Then, we study the non monotone reduced model and prove the existence of perturbed solutions and perturbed waves, particularly in the bistable case. Finally, we consider the complete model proposed initially, perform numerical simulations and provide more specific results. We study the consistency between the reduced and complete models for a certain range of parameters. We elaborate bifurcation diagrams showing the evolution of inflammation upon endothelial permeability and LDL accumulation. We show that the regulation of atherosclerosis progression is mediated by anti-inflammatory responses that, up to certain extent, lead to plaque regression.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.