{"title":"四元数厄密形式和超奇异阿贝尔变体的型数","authors":"T. Ibukiyama","doi":"10.18910/68357","DOIUrl":null,"url":null,"abstract":"The word type number of an algebra means classically the number of isomorphism classes of maximal orders in the algebra, but here we consider quaternion hermitian lattices in a fixed genus and their right orders. Instead of inner isomorphism classes of right orders, we consider isomorphism classes realized by similitudes of the quaternion hermitian forms.The number T of such isomorphism classes are called type number or G-type number , where G is the group of quaternion hermitian similitudes. We express T in terms of traces of some special Hecke operators. This is a generalization of the result announced in [5] (I) from the principal genus to general lattices. We also apply our result to the number of isomorphism classes of any polarized superspecial abelian varieties which have a model over F p such that the polarizations are in a ”fixed genus of lattices”. This is a generalization of [8] and has an application to the number of components in the supersingular locus which are defined over F p .","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"55 1","pages":"369-384"},"PeriodicalIF":0.5000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Type numbers of quaternion hermitian forms and supersingular abelian varieties\",\"authors\":\"T. Ibukiyama\",\"doi\":\"10.18910/68357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The word type number of an algebra means classically the number of isomorphism classes of maximal orders in the algebra, but here we consider quaternion hermitian lattices in a fixed genus and their right orders. Instead of inner isomorphism classes of right orders, we consider isomorphism classes realized by similitudes of the quaternion hermitian forms.The number T of such isomorphism classes are called type number or G-type number , where G is the group of quaternion hermitian similitudes. We express T in terms of traces of some special Hecke operators. This is a generalization of the result announced in [5] (I) from the principal genus to general lattices. We also apply our result to the number of isomorphism classes of any polarized superspecial abelian varieties which have a model over F p such that the polarizations are in a ”fixed genus of lattices”. This is a generalization of [8] and has an application to the number of components in the supersingular locus which are defined over F p .\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"55 1\",\"pages\":\"369-384\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/68357\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/68357","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Type numbers of quaternion hermitian forms and supersingular abelian varieties
The word type number of an algebra means classically the number of isomorphism classes of maximal orders in the algebra, but here we consider quaternion hermitian lattices in a fixed genus and their right orders. Instead of inner isomorphism classes of right orders, we consider isomorphism classes realized by similitudes of the quaternion hermitian forms.The number T of such isomorphism classes are called type number or G-type number , where G is the group of quaternion hermitian similitudes. We express T in terms of traces of some special Hecke operators. This is a generalization of the result announced in [5] (I) from the principal genus to general lattices. We also apply our result to the number of isomorphism classes of any polarized superspecial abelian varieties which have a model over F p such that the polarizations are in a ”fixed genus of lattices”. This is a generalization of [8] and has an application to the number of components in the supersingular locus which are defined over F p .
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.