独立的本质:六月以来的拟阵Hodge理论

IF 2 3区 数学 Q1 MATHEMATICS
C. Eur
{"title":"独立的本质:六月以来的拟阵Hodge理论","authors":"C. Eur","doi":"10.1090/bull/1803","DOIUrl":null,"url":null,"abstract":"Matroids are combinatorial abstractions of independence, a ubiquitous notion that pervades many branches of mathematics. June Huh and his collaborators recently made spectacular breakthroughs by developing a Hodge theory of matroids that resolved several long-standing conjectures in matroid theory. We survey the main results in this development and ideas behind them.","PeriodicalId":9513,"journal":{"name":"Bulletin of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Essence of independence: Hodge theory of matroids since June Huh\",\"authors\":\"C. Eur\",\"doi\":\"10.1090/bull/1803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matroids are combinatorial abstractions of independence, a ubiquitous notion that pervades many branches of mathematics. June Huh and his collaborators recently made spectacular breakthroughs by developing a Hodge theory of matroids that resolved several long-standing conjectures in matroid theory. We survey the main results in this development and ideas behind them.\",\"PeriodicalId\":9513,\"journal\":{\"name\":\"Bulletin of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1803\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/bull/1803","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

拟阵是独立性的组合抽象,这是一个普遍存在的概念,贯穿于数学的许多分支。June Huh和他的合作者最近通过发展Hodge拟阵理论取得了惊人的突破,该理论解决了拟阵理论中几个长期存在的猜想。我们调查了这一发展的主要成果及其背后的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Essence of independence: Hodge theory of matroids since June Huh
Matroids are combinatorial abstractions of independence, a ubiquitous notion that pervades many branches of mathematics. June Huh and his collaborators recently made spectacular breakthroughs by developing a Hodge theory of matroids that resolved several long-standing conjectures in matroid theory. We survey the main results in this development and ideas behind them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信