双度量测度空间中的渐近均值调和函数

Pub Date : 2020-05-28 DOI:10.1515/agms-2022-0143
Tomasz Adamowicz, Antoni Kijowski, Elefterios Soultanis
{"title":"双度量测度空间中的渐近均值调和函数","authors":"Tomasz Adamowicz, Antoni Kijowski, Elefterios Soultanis","doi":"10.1515/agms-2022-0143","DOIUrl":null,"url":null,"abstract":"Abstract We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds and in doubling metric measure spaces. We show that the strongly amv-harmonic functions are Hölder continuous for any exponent below one. More generally, we define the class of functions with finite amv-norm and show that functions in this class belong to a fractional Hajłasz–Sobolev space and their blow-ups satisfy the mean-value property. Furthermore, in the weighted Euclidean setting we find an elliptic PDE satisfied by amv-harmonic functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymptotically Mean Value Harmonic Functions in Doubling Metric Measure Spaces\",\"authors\":\"Tomasz Adamowicz, Antoni Kijowski, Elefterios Soultanis\",\"doi\":\"10.1515/agms-2022-0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds and in doubling metric measure spaces. We show that the strongly amv-harmonic functions are Hölder continuous for any exponent below one. More generally, we define the class of functions with finite amv-norm and show that functions in this class belong to a fractional Hajłasz–Sobolev space and their blow-ups satisfy the mean-value property. Furthermore, in the weighted Euclidean setting we find an elliptic PDE satisfied by amv-harmonic functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要考虑具有渐近均值性质的函数,这些函数在黎曼流形和双度量度量空间中具有调和性。我们证明了强谐波函数对于任何低于1的指数都是Hölder连续的。更一般地,我们定义了一类具有有限amv-范数的函数,并证明了该类函数属于分数阶Hajłasz-Sobolev空间,并且它们的膨胀满足中值性质。此外,在加权欧几里得环境下,我们得到了一个由谐波函数满足的椭圆偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotically Mean Value Harmonic Functions in Doubling Metric Measure Spaces
Abstract We consider functions with an asymptotic mean value property, known to characterize harmonicity in Riemannian manifolds and in doubling metric measure spaces. We show that the strongly amv-harmonic functions are Hölder continuous for any exponent below one. More generally, we define the class of functions with finite amv-norm and show that functions in this class belong to a fractional Hajłasz–Sobolev space and their blow-ups satisfy the mean-value property. Furthermore, in the weighted Euclidean setting we find an elliptic PDE satisfied by amv-harmonic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信