{"title":"2-UAV协同运输系统的设计与实现","authors":"Qianli Weng, Guanming Liu, Pei Zhou, Haoran Shi, Kai Wen Zhang","doi":"10.1177/17568293231158443","DOIUrl":null,"url":null,"abstract":"UAV application research has attracted more and more attention of researchers. However, in the field of UAV transportation, especially in the case of multi-UAV cooperation, there is little research or design on the overall system of multi-UAV cooperative transportation due to the complexity of the task and many factors need to be considered. In this paper, we first introduce a 2-UAV cooperative transportation task scenario and we call it Co-TS. Then according to the scenario, we design a task planning system, which describes the entire process of 2-UAV performing transportation tasks; in order to solve the design complexity of this UAV upper-layer software, we propose a model architecture of 2-UAV transportation application, design the functions of each module and analyze the relationship between modules in the model architecture; in addition, to realize the correct execution of the 2-UAV cooperative transportation task, the task execution is divided into four states which include preparation, rising, forwarding, and landing states, and the corresponding cooperative transportation control flow algorithm is designed for four states. Finally, we develop this system and conduct experiments. The quantitative and qualitative results demonstrate the effectiveness of our method.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Co-TS: Design and Implementation of a 2-UAV Cooperative Transportation System\",\"authors\":\"Qianli Weng, Guanming Liu, Pei Zhou, Haoran Shi, Kai Wen Zhang\",\"doi\":\"10.1177/17568293231158443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UAV application research has attracted more and more attention of researchers. However, in the field of UAV transportation, especially in the case of multi-UAV cooperation, there is little research or design on the overall system of multi-UAV cooperative transportation due to the complexity of the task and many factors need to be considered. In this paper, we first introduce a 2-UAV cooperative transportation task scenario and we call it Co-TS. Then according to the scenario, we design a task planning system, which describes the entire process of 2-UAV performing transportation tasks; in order to solve the design complexity of this UAV upper-layer software, we propose a model architecture of 2-UAV transportation application, design the functions of each module and analyze the relationship between modules in the model architecture; in addition, to realize the correct execution of the 2-UAV cooperative transportation task, the task execution is divided into four states which include preparation, rising, forwarding, and landing states, and the corresponding cooperative transportation control flow algorithm is designed for four states. Finally, we develop this system and conduct experiments. The quantitative and qualitative results demonstrate the effectiveness of our method.\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293231158443\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293231158443","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Co-TS: Design and Implementation of a 2-UAV Cooperative Transportation System
UAV application research has attracted more and more attention of researchers. However, in the field of UAV transportation, especially in the case of multi-UAV cooperation, there is little research or design on the overall system of multi-UAV cooperative transportation due to the complexity of the task and many factors need to be considered. In this paper, we first introduce a 2-UAV cooperative transportation task scenario and we call it Co-TS. Then according to the scenario, we design a task planning system, which describes the entire process of 2-UAV performing transportation tasks; in order to solve the design complexity of this UAV upper-layer software, we propose a model architecture of 2-UAV transportation application, design the functions of each module and analyze the relationship between modules in the model architecture; in addition, to realize the correct execution of the 2-UAV cooperative transportation task, the task execution is divided into four states which include preparation, rising, forwarding, and landing states, and the corresponding cooperative transportation control flow algorithm is designed for four states. Finally, we develop this system and conduct experiments. The quantitative and qualitative results demonstrate the effectiveness of our method.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.