定价非对称旅行商问题的固定比率多项式时间近似算法

Q3 Mathematics
Ksenia Rizhenko, Katherine Neznakhina, M. Khachay
{"title":"定价非对称旅行商问题的固定比率多项式时间近似算法","authors":"Ksenia Rizhenko, Katherine Neznakhina, M. Khachay","doi":"10.15826/umj.2023.1.012","DOIUrl":null,"url":null,"abstract":"We develop the first fixed-ratio approximation algorithm for the well-known Prize-Collecting Asymmetric Traveling Salesman Problem,  which has numerous valuable applications in operations research. An instance of this problem is given by a complete node- and edge-weighted digraph \\(G\\). Each node of the graph \\(G\\) can either be visited by the resulting route or skipped, for some penalty, while the arcs of \\(G\\)  are weighted by non-negative transportation costs that fulfill the triangle inequality constraint. The goal is to find a closed walk that minimizes the total transportation costs augmented by the accumulated penalties. We show that an arbitrary \\(\\alpha\\)-approximation algorithm for the Asymmetric Traveling Salesman Problem induces an \\((\\alpha+1)\\)-approximation for the problem in question. In particular, using the recent \\((22+\\varepsilon)\\)-approximation algorithm of V. Traub and J. Vygen that improves the seminal result of  O. Svensson, J. Tarnavski, and L. Végh,  we obtain \\((23+\\varepsilon)\\)-approximate solutions for the problem.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIXED RATIO POLYNOMIAL TIME APPROXIMATION ALGORITHM FOR THE PRIZE-COLLECTING ASYMMETRIC TRAVELING SALESMAN PROBLEM\",\"authors\":\"Ksenia Rizhenko, Katherine Neznakhina, M. Khachay\",\"doi\":\"10.15826/umj.2023.1.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the first fixed-ratio approximation algorithm for the well-known Prize-Collecting Asymmetric Traveling Salesman Problem,  which has numerous valuable applications in operations research. An instance of this problem is given by a complete node- and edge-weighted digraph \\\\(G\\\\). Each node of the graph \\\\(G\\\\) can either be visited by the resulting route or skipped, for some penalty, while the arcs of \\\\(G\\\\)  are weighted by non-negative transportation costs that fulfill the triangle inequality constraint. The goal is to find a closed walk that minimizes the total transportation costs augmented by the accumulated penalties. We show that an arbitrary \\\\(\\\\alpha\\\\)-approximation algorithm for the Asymmetric Traveling Salesman Problem induces an \\\\((\\\\alpha+1)\\\\)-approximation for the problem in question. In particular, using the recent \\\\((22+\\\\varepsilon)\\\\)-approximation algorithm of V. Traub and J. Vygen that improves the seminal result of  O. Svensson, J. Tarnavski, and L. Végh,  we obtain \\\\((23+\\\\varepsilon)\\\\)-approximate solutions for the problem.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2023.1.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2023.1.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

针对著名的不对称旅行商问题,我们开发了第一个固定比近似算法,该算法在运筹学中有许多有价值的应用。该问题的一个实例由一个完整的节点和边加权有向图\(G\)给出。图\(G\)的每个节点既可以被生成的路线访问,也可以被跳过,因为会受到一些惩罚,而\(G\)的弧线则被满足三角形不等式约束的非负运输成本加权。目标是找到一个封闭的步行,使总运输成本最小化,并增加累积的罚款。我们证明了不对称旅行推销员问题的任意\(\alpha\) -近似算法可以推导出问题的\((\alpha+1)\) -近似。特别地,使用V. Traub和J. Vygen最近提出的\((22+\varepsilon)\) -近似算法,改进了O. Svensson、J. Tarnavski和L. v薪金格的开创性结果,我们得到了该问题的\((23+\varepsilon)\) -近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FIXED RATIO POLYNOMIAL TIME APPROXIMATION ALGORITHM FOR THE PRIZE-COLLECTING ASYMMETRIC TRAVELING SALESMAN PROBLEM
We develop the first fixed-ratio approximation algorithm for the well-known Prize-Collecting Asymmetric Traveling Salesman Problem,  which has numerous valuable applications in operations research. An instance of this problem is given by a complete node- and edge-weighted digraph \(G\). Each node of the graph \(G\) can either be visited by the resulting route or skipped, for some penalty, while the arcs of \(G\)  are weighted by non-negative transportation costs that fulfill the triangle inequality constraint. The goal is to find a closed walk that minimizes the total transportation costs augmented by the accumulated penalties. We show that an arbitrary \(\alpha\)-approximation algorithm for the Asymmetric Traveling Salesman Problem induces an \((\alpha+1)\)-approximation for the problem in question. In particular, using the recent \((22+\varepsilon)\)-approximation algorithm of V. Traub and J. Vygen that improves the seminal result of  O. Svensson, J. Tarnavski, and L. Végh,  we obtain \((23+\varepsilon)\)-approximate solutions for the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信