空间服务量中GNSS信号的电离层传播特性

IF 0.2
Kui Lin, X. Zhan, Jihong Huang
{"title":"空间服务量中GNSS信号的电离层传播特性","authors":"Kui Lin, X. Zhan, Jihong Huang","doi":"10.1504/IJSPACESE.2019.10022799","DOIUrl":null,"url":null,"abstract":"In recent years, Global Navigation Satellite System (GNSS) showed a remarkable capability to serve for medium and high earth orbit spacecraft, called space service volume (SSV). However, SSV users face a critical problem of insufficient GNSS signal visibility. In previous studies, the ionospheric signals are usually discarded, which results in a large discrepancy in mission design and system optimisation. In this paper, a three-dimensional ray-tracing method is adopted to analyse signal propagation through the ionosphere. Taking GPS constellation and a GEO user as an example, the principles are validated with a careful simulation. The results show an interesting phenomenon that the bending angle of the signal path and the ionospheric attenuation are very small, and the ionospheric delay is large but eliminable. If the ionospheric signals are considered, the signal visibility and availability will significantly increase, which leads to a shortened maximum outage time for SSV users.","PeriodicalId":41578,"journal":{"name":"International Journal of Space Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GNSS signals ionospheric propagation characteristics in space service volume\",\"authors\":\"Kui Lin, X. Zhan, Jihong Huang\",\"doi\":\"10.1504/IJSPACESE.2019.10022799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Global Navigation Satellite System (GNSS) showed a remarkable capability to serve for medium and high earth orbit spacecraft, called space service volume (SSV). However, SSV users face a critical problem of insufficient GNSS signal visibility. In previous studies, the ionospheric signals are usually discarded, which results in a large discrepancy in mission design and system optimisation. In this paper, a three-dimensional ray-tracing method is adopted to analyse signal propagation through the ionosphere. Taking GPS constellation and a GEO user as an example, the principles are validated with a careful simulation. The results show an interesting phenomenon that the bending angle of the signal path and the ionospheric attenuation are very small, and the ionospheric delay is large but eliminable. If the ionospheric signals are considered, the signal visibility and availability will significantly increase, which leads to a shortened maximum outage time for SSV users.\",\"PeriodicalId\":41578,\"journal\":{\"name\":\"International Journal of Space Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Space Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSPACESE.2019.10022799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPACESE.2019.10022799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,全球卫星导航系统(GNSS)显示出显著的服务于中、高地球轨道航天器的能力,称为空间服务量(SSV)。然而,SSV用户面临着GNSS信号可见性不足的关键问题。在以往的研究中,电离层信号通常被丢弃,这给任务设计和系统优化带来了很大的差异。本文采用三维射线追踪方法分析了信号在电离层中的传播。以GPS星座和GEO用户为例,进行了仿真验证。结果显示了一个有趣的现象,即信号路径的弯曲角和电离层衰减很小,电离层延迟很大但可以消除。如果考虑电离层信号,信号可见性和可用性将显著提高,这将缩短SSV用户的最大停机时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GNSS signals ionospheric propagation characteristics in space service volume
In recent years, Global Navigation Satellite System (GNSS) showed a remarkable capability to serve for medium and high earth orbit spacecraft, called space service volume (SSV). However, SSV users face a critical problem of insufficient GNSS signal visibility. In previous studies, the ionospheric signals are usually discarded, which results in a large discrepancy in mission design and system optimisation. In this paper, a three-dimensional ray-tracing method is adopted to analyse signal propagation through the ionosphere. Taking GPS constellation and a GEO user as an example, the principles are validated with a careful simulation. The results show an interesting phenomenon that the bending angle of the signal path and the ionospheric attenuation are very small, and the ionospheric delay is large but eliminable. If the ionospheric signals are considered, the signal visibility and availability will significantly increase, which leads to a shortened maximum outage time for SSV users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信