二面体基团中的不同碱基

IF 0.7 Q2 MATHEMATICS
T. Banakh, V. Gavrylkiv
{"title":"二面体基团中的不同碱基","authors":"T. Banakh, V. Gavrylkiv","doi":"10.22108/ijgt.2017.21612","DOIUrl":null,"url":null,"abstract":"A subset $B$ of a group $G$ is called a {em‎ ‎difference basis} of $G$ if each element $gin G$ can be written as the‎ ‎difference $g=ab^{-1}$ of some elements $a,bin B$‎. ‎The smallest‎ ‎cardinality $|B|$ of a difference basis $Bsubset G$ is called the {em‎ ‎difference size} of $G$ and is denoted by $Delta[G]$‎. ‎The fraction ‎‎‎$eth[G]:=Delta[G]/{sqrt{|G|}}$ is called the {em difference characteristic} of $G$‎. ‎We prove that for every $nin N$ the dihedral group‎ ‎$D_{2n}$ of order $2n$ has the difference characteristic‎ ‎$sqrt{2}leeth[D_{2n}]leqfrac{48}{sqrt{586}}approx1.983$‎. ‎Moreover‎, ‎if $nge 2cdot 10^{15}$‎, ‎then $eth[D_{2n}]<frac{4}{sqrt{6}}approx1.633$‎. ‎Also we calculate the difference sizes and characteristics of all dihedral groups of cardinality $le80$‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Difference bases in dihedral groups\",\"authors\":\"T. Banakh, V. Gavrylkiv\",\"doi\":\"10.22108/ijgt.2017.21612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset $B$ of a group $G$ is called a {em‎ ‎difference basis} of $G$ if each element $gin G$ can be written as the‎ ‎difference $g=ab^{-1}$ of some elements $a,bin B$‎. ‎The smallest‎ ‎cardinality $|B|$ of a difference basis $Bsubset G$ is called the {em‎ ‎difference size} of $G$ and is denoted by $Delta[G]$‎. ‎The fraction ‎‎‎$eth[G]:=Delta[G]/{sqrt{|G|}}$ is called the {em difference characteristic} of $G$‎. ‎We prove that for every $nin N$ the dihedral group‎ ‎$D_{2n}$ of order $2n$ has the difference characteristic‎ ‎$sqrt{2}leeth[D_{2n}]leqfrac{48}{sqrt{586}}approx1.983$‎. ‎Moreover‎, ‎if $nge 2cdot 10^{15}$‎, ‎then $eth[D_{2n}]<frac{4}{sqrt{6}}approx1.633$‎. ‎Also we calculate the difference sizes and characteristics of all dihedral groups of cardinality $le80$‎.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/ijgt.2017.21612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/ijgt.2017.21612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

群$G$的子集$B$称为{em‎ ‎差基},如果每个元素$gin G$都可以写成‎ ‎一些元素$a,bin B的差值$g=ab^{-1}$$‎. ‎最小的‎ ‎差基$Bsubset G$的基数$|B|$称为{em‎ ‎差值大小}为$G$,并用$Delta[G]表示$‎. ‎分数‎‎‎$eth[G]:=Delta[G]/{sqrt{|G|}}$被称为$G的{em差分特征}$‎. ‎我们证明了每$nin N$的二面体群‎ ‎$次序为$2n$的D_{2n}$具有差分特性‎ ‎$sqrt{2}leeth[D_{2n}]leqfrac{48}{sqrt{586}}近似1.983$‎. ‎此外‎, ‎如果$nge 2点10^{15}$‎, ‎则$eth[D_{2n}]本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Difference bases in dihedral groups
A subset $B$ of a group $G$ is called a {em‎ ‎difference basis} of $G$ if each element $gin G$ can be written as the‎ ‎difference $g=ab^{-1}$ of some elements $a,bin B$‎. ‎The smallest‎ ‎cardinality $|B|$ of a difference basis $Bsubset G$ is called the {em‎ ‎difference size} of $G$ and is denoted by $Delta[G]$‎. ‎The fraction ‎‎‎$eth[G]:=Delta[G]/{sqrt{|G|}}$ is called the {em difference characteristic} of $G$‎. ‎We prove that for every $nin N$ the dihedral group‎ ‎$D_{2n}$ of order $2n$ has the difference characteristic‎ ‎$sqrt{2}leeth[D_{2n}]leqfrac{48}{sqrt{586}}approx1.983$‎. ‎Moreover‎, ‎if $nge 2cdot 10^{15}$‎, ‎then $eth[D_{2n}]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信