关于不连续双射函数的迭代

IF 0.4 Q4 MATHEMATICS
H. Fripertinger
{"title":"关于不连续双射函数的迭代","authors":"H. Fripertinger","doi":"10.2478/amsil-2020-0009","DOIUrl":null,"url":null,"abstract":"Abstract We present three different types of bijective functions f : I → I on a compact interval I with finitely many discontinuities where certain iterates of these functions will be continuous. All these examples are strongly related to permutations, in particular to derangements in the first case, and permutations with a certain number of successions (or small ascents) in the second case. All functions of type III form a direct product of a symmetric group with a wreath product. It will be shown that any iterative root F : J → J of the identity of order k on a compact interval J with finitely many discontinuities is conjugate to a function f of type III, i.e., F = φ−1 ∘ f ∘ φ where φ is a continuous, bijective, and increasing mapping between J and [0, n] for some integer n.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"34 1","pages":"51 - 72"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Iteration of Bijective Functions with Discontinuities\",\"authors\":\"H. Fripertinger\",\"doi\":\"10.2478/amsil-2020-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present three different types of bijective functions f : I → I on a compact interval I with finitely many discontinuities where certain iterates of these functions will be continuous. All these examples are strongly related to permutations, in particular to derangements in the first case, and permutations with a certain number of successions (or small ascents) in the second case. All functions of type III form a direct product of a symmetric group with a wreath product. It will be shown that any iterative root F : J → J of the identity of order k on a compact interval J with finitely many discontinuities is conjugate to a function f of type III, i.e., F = φ−1 ∘ f ∘ φ where φ is a continuous, bijective, and increasing mapping between J and [0, n] for some integer n.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"34 1\",\"pages\":\"51 - 72\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2020-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在具有有限多不连续点的紧区间I上,给出了三种不同类型的二射函数f: I→I,其中这些函数的某些迭代是连续的。所有这些例子都与排列密切相关,特别是第一种情况下的无序排列,以及第二种情况下具有一定数量的序列(或小上升)的排列。所有III型函数都是对称群与环积的直积。我们将证明,在具有有限多个不连续点的紧区间J上,任何k阶单位元的迭代根F: J→J都共轭于一类函数F,即F = φ−1°F°φ,其中φ是J与[0,n]之间对某整数n的连续双射递增映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Iteration of Bijective Functions with Discontinuities
Abstract We present three different types of bijective functions f : I → I on a compact interval I with finitely many discontinuities where certain iterates of these functions will be continuous. All these examples are strongly related to permutations, in particular to derangements in the first case, and permutations with a certain number of successions (or small ascents) in the second case. All functions of type III form a direct product of a symmetric group with a wreath product. It will be shown that any iterative root F : J → J of the identity of order k on a compact interval J with finitely many discontinuities is conjugate to a function f of type III, i.e., F = φ−1 ∘ f ∘ φ where φ is a continuous, bijective, and increasing mapping between J and [0, n] for some integer n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信