{"title":"Daisy立方体的Wiener指数与Mostar指数的关系","authors":"M. Mollard","doi":"10.47443/dml.2022.068","DOIUrl":null,"url":null,"abstract":"Daisy cubes are a class of isometric subgraphs of the hypercubes Q n . Daisy cubes include some previously well known families of graphs like Fibonacci cubes and Lucas cubes. Moreover they appear in chemical graph theory. Two distance invariants, Wiener and Mostar indices, have been introduced in the context of the mathematical chemistry. The Wiener index W ( G ) is the sum of distance between all unordered pairs of vertices of a graph G . The Mostar index Mo ( G ) is a measure of how far G is from being distance balanced. In this paper we establish that the Wiener and the Mostar indices of a daisy cube G are linked by the relation 2 W ( G ) − Mo ( G ) = | V ( G ) || E ( G ) | . We deduce an expression of Wiener and Mostar index for daisy cubes.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Relation Between Wiener Index and Mostar Index for Daisy Cubes\",\"authors\":\"M. Mollard\",\"doi\":\"10.47443/dml.2022.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Daisy cubes are a class of isometric subgraphs of the hypercubes Q n . Daisy cubes include some previously well known families of graphs like Fibonacci cubes and Lucas cubes. Moreover they appear in chemical graph theory. Two distance invariants, Wiener and Mostar indices, have been introduced in the context of the mathematical chemistry. The Wiener index W ( G ) is the sum of distance between all unordered pairs of vertices of a graph G . The Mostar index Mo ( G ) is a measure of how far G is from being distance balanced. In this paper we establish that the Wiener and the Mostar indices of a daisy cube G are linked by the relation 2 W ( G ) − Mo ( G ) = | V ( G ) || E ( G ) | . We deduce an expression of Wiener and Mostar index for daisy cubes.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
摘要
菊花立方体是超立方体qn的一类等距子图。雏菊立方体包括一些以前众所周知的图族,如斐波那契立方体和卢卡斯立方体。此外,它们还出现在化学图论中。在数学化学的背景下,引入了两个距离不变量:Wiener指数和Mostar指数。维纳指数W (G)是图G中所有无序顶点对之间距离的和。莫斯塔尔指数Mo (G)是衡量G离距离平衡有多远的指标。本文建立了菊花立方G的Wiener指数和Mostar指数由2w (G)−Mo (G) = | V (G) || E (G) |联系起来。我们推导了雏菊立方体的Wiener指数和Mostar指数的表达式。
A Relation Between Wiener Index and Mostar Index for Daisy Cubes
Daisy cubes are a class of isometric subgraphs of the hypercubes Q n . Daisy cubes include some previously well known families of graphs like Fibonacci cubes and Lucas cubes. Moreover they appear in chemical graph theory. Two distance invariants, Wiener and Mostar indices, have been introduced in the context of the mathematical chemistry. The Wiener index W ( G ) is the sum of distance between all unordered pairs of vertices of a graph G . The Mostar index Mo ( G ) is a measure of how far G is from being distance balanced. In this paper we establish that the Wiener and the Mostar indices of a daisy cube G are linked by the relation 2 W ( G ) − Mo ( G ) = | V ( G ) || E ( G ) | . We deduce an expression of Wiener and Mostar index for daisy cubes.