{"title":"GIX/Geo/c队列的简单解析和高效计算结果","authors":"M. Chaudhry, James J. Kim, A. Banik","doi":"10.1155/2019/6480139","DOIUrl":null,"url":null,"abstract":"A simple solution to determine the distributions of queue-lengths at different observation epochs for the model GIX/Geo/c is presented. In the past, various discrete-time queueing models, particularly the multiserver bulk-arrival queues, have been solved using complicated methods that lead to incomplete results. The purpose of this paper is to use the roots method to solve the model GIX/Geo/c that leads to a result that is analytically elegant and computationally efficient. This method works well even for the case when the inter-batch-arrival times follow heavy-tailed distributions. The roots of the underlying characteristic equation form the basis for all distributions of queue-lengths at different time epochs.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6480139","citationCount":"5","resultStr":"{\"title\":\"Analytically Simple and Computationally Efficient Results for the GIX/Geo/c Queues\",\"authors\":\"M. Chaudhry, James J. Kim, A. Banik\",\"doi\":\"10.1155/2019/6480139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple solution to determine the distributions of queue-lengths at different observation epochs for the model GIX/Geo/c is presented. In the past, various discrete-time queueing models, particularly the multiserver bulk-arrival queues, have been solved using complicated methods that lead to incomplete results. The purpose of this paper is to use the roots method to solve the model GIX/Geo/c that leads to a result that is analytically elegant and computationally efficient. This method works well even for the case when the inter-batch-arrival times follow heavy-tailed distributions. The roots of the underlying characteristic equation form the basis for all distributions of queue-lengths at different time epochs.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/6480139\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/6480139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/6480139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Analytically Simple and Computationally Efficient Results for the GIX/Geo/c Queues
A simple solution to determine the distributions of queue-lengths at different observation epochs for the model GIX/Geo/c is presented. In the past, various discrete-time queueing models, particularly the multiserver bulk-arrival queues, have been solved using complicated methods that lead to incomplete results. The purpose of this paper is to use the roots method to solve the model GIX/Geo/c that leads to a result that is analytically elegant and computationally efficient. This method works well even for the case when the inter-batch-arrival times follow heavy-tailed distributions. The roots of the underlying characteristic equation form the basis for all distributions of queue-lengths at different time epochs.