{"title":"二维瑞利商移位QR算法","authors":"X. Chen, Hongguo Xu","doi":"10.1002/nla.2487","DOIUrl":null,"url":null,"abstract":"We introduce the two‐sided Rayleigh quotient shift to the QR algorithm for non‐Hermitian matrices to achieve a cubic local convergence rate. For the singly shifted case, the two‐sided Rayleigh quotient iteration is incorporated into the QR iteration. A modified version of the method and its truncated version are developed to improve the efficiency. Based on the observation that the Francis double‐shift QR iteration is related to a 2D Grassmann–Rayleigh quotient iteration, A doubly shifted QR algorithm with the two‐sided 2D Grassmann–Rayleigh quotient double‐shift is proposed. A modified version of the method and its truncated version are also developed. Numerical examples are presented to show the convergence behavior of the proposed algorithms. Numerical examples also show that the truncated versions of the modified methods outperform their counterparts including the standard Rayleigh quotient single‐shift and the Francis double‐shift.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"QR algorithm with two‐sided Rayleigh quotient shifts\",\"authors\":\"X. Chen, Hongguo Xu\",\"doi\":\"10.1002/nla.2487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the two‐sided Rayleigh quotient shift to the QR algorithm for non‐Hermitian matrices to achieve a cubic local convergence rate. For the singly shifted case, the two‐sided Rayleigh quotient iteration is incorporated into the QR iteration. A modified version of the method and its truncated version are developed to improve the efficiency. Based on the observation that the Francis double‐shift QR iteration is related to a 2D Grassmann–Rayleigh quotient iteration, A doubly shifted QR algorithm with the two‐sided 2D Grassmann–Rayleigh quotient double‐shift is proposed. A modified version of the method and its truncated version are also developed. Numerical examples are presented to show the convergence behavior of the proposed algorithms. Numerical examples also show that the truncated versions of the modified methods outperform their counterparts including the standard Rayleigh quotient single‐shift and the Francis double‐shift.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2487\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2487","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
QR algorithm with two‐sided Rayleigh quotient shifts
We introduce the two‐sided Rayleigh quotient shift to the QR algorithm for non‐Hermitian matrices to achieve a cubic local convergence rate. For the singly shifted case, the two‐sided Rayleigh quotient iteration is incorporated into the QR iteration. A modified version of the method and its truncated version are developed to improve the efficiency. Based on the observation that the Francis double‐shift QR iteration is related to a 2D Grassmann–Rayleigh quotient iteration, A doubly shifted QR algorithm with the two‐sided 2D Grassmann–Rayleigh quotient double‐shift is proposed. A modified version of the method and its truncated version are also developed. Numerical examples are presented to show the convergence behavior of the proposed algorithms. Numerical examples also show that the truncated versions of the modified methods outperform their counterparts including the standard Rayleigh quotient single‐shift and the Francis double‐shift.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.