J. Long, Richard R. Jones, D. Oxlade, S. Daniels, S. Gilment
{"title":"伊拉克东北部库尔德斯坦碳酸盐岩储层单元多尺度裂缝长度分析","authors":"J. Long, Richard R. Jones, D. Oxlade, S. Daniels, S. Gilment","doi":"10.1144/petgeo2018-168","DOIUrl":null,"url":null,"abstract":"Fracture scaling parameters are an important input for modelling of naturally fractured reservoirs, but are very difficult to derive from subsurface data. Extensive areas of exposure in the northern Kurdistan Region of Iraq provide useful outcrop analogues for nearby producing and potential hydrocarbon fields. A variety of data acquisition methods are used to analyse fracture systems in carbonates of the Upper Cretaceous Aqra–Bekhme Formation across a wide range of scales. When plotted on length–intensity graphs, the collated data lie below an upper envelope that follows a power-law distribution over five orders of magnitude between 0.1 and 3000 m, and which defines the maximum likely intensity of background fracturing across the region. Contouring the length–intensity data shows the distribution of intensities below the upper envelope, and allows modal and minimum likely intensities to be estimated. Likely causes for the observed variation in fracture intensities include the domainal nature of deformation, the proximity to high strain zones including faults, second-order effects such as ladder fractures, and variations in the thickness of mechanical layering. Thematic collection: This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":"25 1","pages":"429 - 442"},"PeriodicalIF":2.1000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1144/petgeo2018-168","citationCount":"1","resultStr":"{\"title\":\"Multiscale fracture length analysis in carbonate reservoir units, Kurdistan, NE Iraq\",\"authors\":\"J. Long, Richard R. Jones, D. Oxlade, S. Daniels, S. Gilment\",\"doi\":\"10.1144/petgeo2018-168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fracture scaling parameters are an important input for modelling of naturally fractured reservoirs, but are very difficult to derive from subsurface data. Extensive areas of exposure in the northern Kurdistan Region of Iraq provide useful outcrop analogues for nearby producing and potential hydrocarbon fields. A variety of data acquisition methods are used to analyse fracture systems in carbonates of the Upper Cretaceous Aqra–Bekhme Formation across a wide range of scales. When plotted on length–intensity graphs, the collated data lie below an upper envelope that follows a power-law distribution over five orders of magnitude between 0.1 and 3000 m, and which defines the maximum likely intensity of background fracturing across the region. Contouring the length–intensity data shows the distribution of intensities below the upper envelope, and allows modal and minimum likely intensities to be estimated. Likely causes for the observed variation in fracture intensities include the domainal nature of deformation, the proximity to high strain zones including faults, second-order effects such as ladder fractures, and variations in the thickness of mechanical layering. Thematic collection: This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":\"25 1\",\"pages\":\"429 - 442\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1144/petgeo2018-168\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2018-168\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2018-168","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiscale fracture length analysis in carbonate reservoir units, Kurdistan, NE Iraq
Fracture scaling parameters are an important input for modelling of naturally fractured reservoirs, but are very difficult to derive from subsurface data. Extensive areas of exposure in the northern Kurdistan Region of Iraq provide useful outcrop analogues for nearby producing and potential hydrocarbon fields. A variety of data acquisition methods are used to analyse fracture systems in carbonates of the Upper Cretaceous Aqra–Bekhme Formation across a wide range of scales. When plotted on length–intensity graphs, the collated data lie below an upper envelope that follows a power-law distribution over five orders of magnitude between 0.1 and 3000 m, and which defines the maximum likely intensity of background fracturing across the region. Contouring the length–intensity data shows the distribution of intensities below the upper envelope, and allows modal and minimum likely intensities to be estimated. Likely causes for the observed variation in fracture intensities include the domainal nature of deformation, the proximity to high strain zones including faults, second-order effects such as ladder fractures, and variations in the thickness of mechanical layering. Thematic collection: This article is part of the Naturally Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/naturally-fractured-reservoirs
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.