{"title":"指纹图像模糊边缘识别算法在刑事技术中的应用","authors":"Xinhua Lv","doi":"10.1515/comp-2022-0263","DOIUrl":null,"url":null,"abstract":"Abstract In the context of the rapid development of science and technology and the modernization of the legal system, criminal activities are becoming more and more intelligent and technological, which also puts forward higher requirements for criminal technology. The current criminal technology equipment is relatively backward, and the technical level is not high enough, resulting in a low utilization rate of trace material evidence extraction, which directly affects the role of criminal technology in the investigation and solving of cases. In recent years, fingerprint recognition algorithms and image edge detection algorithms have been widely used in various fields. This work studied the application of fingerprint image fuzzy edge recognition algorithm in criminal technology, in order to improve the level of criminal technology and the utilization rate of physical evidence extraction. The criminal technology system is upgraded and optimized by combining fingerprint recognition algorithm and image edge detection algorithm. And fuzzy theory is added to ensure the feasibility of the research. The experimental results show that the fuzzy edge recognition algorithm of fingerprint image can improve the level of criminal technology and the utilization rate of material evidence to a certain extent. The utilization rate is increased by 7.04%. The recognition accuracy of the fuzzy recognition method is also 13.2% higher than that of the methods in the literature.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of fingerprint image fuzzy edge recognition algorithm in criminal technology\",\"authors\":\"Xinhua Lv\",\"doi\":\"10.1515/comp-2022-0263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the context of the rapid development of science and technology and the modernization of the legal system, criminal activities are becoming more and more intelligent and technological, which also puts forward higher requirements for criminal technology. The current criminal technology equipment is relatively backward, and the technical level is not high enough, resulting in a low utilization rate of trace material evidence extraction, which directly affects the role of criminal technology in the investigation and solving of cases. In recent years, fingerprint recognition algorithms and image edge detection algorithms have been widely used in various fields. This work studied the application of fingerprint image fuzzy edge recognition algorithm in criminal technology, in order to improve the level of criminal technology and the utilization rate of physical evidence extraction. The criminal technology system is upgraded and optimized by combining fingerprint recognition algorithm and image edge detection algorithm. And fuzzy theory is added to ensure the feasibility of the research. The experimental results show that the fuzzy edge recognition algorithm of fingerprint image can improve the level of criminal technology and the utilization rate of material evidence to a certain extent. The utilization rate is increased by 7.04%. The recognition accuracy of the fuzzy recognition method is also 13.2% higher than that of the methods in the literature.\",\"PeriodicalId\":43014,\"journal\":{\"name\":\"Open Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2022-0263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Application of fingerprint image fuzzy edge recognition algorithm in criminal technology
Abstract In the context of the rapid development of science and technology and the modernization of the legal system, criminal activities are becoming more and more intelligent and technological, which also puts forward higher requirements for criminal technology. The current criminal technology equipment is relatively backward, and the technical level is not high enough, resulting in a low utilization rate of trace material evidence extraction, which directly affects the role of criminal technology in the investigation and solving of cases. In recent years, fingerprint recognition algorithms and image edge detection algorithms have been widely used in various fields. This work studied the application of fingerprint image fuzzy edge recognition algorithm in criminal technology, in order to improve the level of criminal technology and the utilization rate of physical evidence extraction. The criminal technology system is upgraded and optimized by combining fingerprint recognition algorithm and image edge detection algorithm. And fuzzy theory is added to ensure the feasibility of the research. The experimental results show that the fuzzy edge recognition algorithm of fingerprint image can improve the level of criminal technology and the utilization rate of material evidence to a certain extent. The utilization rate is increased by 7.04%. The recognition accuracy of the fuzzy recognition method is also 13.2% higher than that of the methods in the literature.