hurwitz型上同场理论的KP层次

IF 1.2 3区 数学 Q1 MATHEMATICS
Reinier Kramer
{"title":"hurwitz型上同场理论的KP层次","authors":"Reinier Kramer","doi":"10.4310/cntp.2023.v17.n2.a1","DOIUrl":null,"url":null,"abstract":"We generalise a result of Kazarian regarding Kadomtsev-Petviashvili integrability for single Hodge integrals to general cohomological field theories related to Hurwitz-type counting problems or hypergeometric tau-functions. The proof uses recent results on the relations between hypergeometric tau-functions and topological recursion, as well as the Eynard-DOSS correspondence between topological recursion and cohomological field theories. In particular, we recover the result of Alexandrov of KP integrability for triple Hodge integrals with a Calabi-Yau condition.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"KP hierarchy for Hurwitz-type cohomological field theories\",\"authors\":\"Reinier Kramer\",\"doi\":\"10.4310/cntp.2023.v17.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalise a result of Kazarian regarding Kadomtsev-Petviashvili integrability for single Hodge integrals to general cohomological field theories related to Hurwitz-type counting problems or hypergeometric tau-functions. The proof uses recent results on the relations between hypergeometric tau-functions and topological recursion, as well as the Eynard-DOSS correspondence between topological recursion and cohomological field theories. In particular, we recover the result of Alexandrov of KP integrability for triple Hodge integrals with a Calabi-Yau condition.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2023.v17.n2.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n2.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们将Kazarian关于单Hodge积分Kadomtsev-Petviashvili可积性的结果推广到与hurwitz型计数问题或超几何τ函数相关的一般上同场理论。该证明使用了超几何tau函数与拓扑递归之间关系的最新结果,以及拓扑递归与上同场理论之间的Eynard-DOSS对应关系。特别地,我们恢复了具有Calabi-Yau条件的三重Hodge积分的KP可积性的Alexandrov结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KP hierarchy for Hurwitz-type cohomological field theories
We generalise a result of Kazarian regarding Kadomtsev-Petviashvili integrability for single Hodge integrals to general cohomological field theories related to Hurwitz-type counting problems or hypergeometric tau-functions. The proof uses recent results on the relations between hypergeometric tau-functions and topological recursion, as well as the Eynard-DOSS correspondence between topological recursion and cohomological field theories. In particular, we recover the result of Alexandrov of KP integrability for triple Hodge integrals with a Calabi-Yau condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信