关于最大彩虹控制数的进一步结果

IF 0.6 Q3 MATHEMATICS
H. A. Ahangar
{"title":"关于最大彩虹控制数的进一步结果","authors":"H. A. Ahangar","doi":"10.22108/TOC.2020.120014.1684","DOIUrl":null,"url":null,"abstract":"‎A  2-rainbow dominating function (2RDF) of a graph $G$ is a‎ ‎function $f$ from the vertex set $V(G)$ to the set of all subsets‎ ‎of the set ${1,2}$ such that for any vertex $vin V(G)$ with‎ ‎$f(v)=emptyset$ the condition $bigcup_{uin N(v)}f(u)={1,2}$‎ ‎is fulfilled‎, ‎where $N(v)$ is the open neighborhood of $v$‎. ‎A ‎ ‎maximal 2-rainbow dominating function of a graph $G$ is a ‎‎$‎‎2‎$‎-rainbow dominating function $f$ such that the set ${win‎‎V(G)|f(w)=emptyset}$ is not a dominating set of $G$‎. ‎The‎ ‎weight of a maximal 2RDF $f$ is the value $omega(f)=sum_{vin‎ ‎V}|f (v)|$‎. ‎The  maximal $2$-rainbow domination number of a‎ ‎graph $G$‎, ‎denoted by $gamma_{m2r}(G)$‎, ‎is the minimum weight of a‎ ‎maximal 2RDF of $G$‎. ‎In this paper‎, ‎we continue the study of maximal‎ ‎2-rainbow domination {number} in graphs‎. ‎Specially‎, ‎we first characterize all graphs with large‎ ‎maximal 2-rainbow domination number‎. ‎Finally‎, ‎we determine the maximal ‎$‎2‎$‎‎-‎rainbow domination number in the sun and sunlet graphs‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"9 1","pages":"201-210"},"PeriodicalIF":0.6000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further results on maximal rainbow domination number\",\"authors\":\"H. A. Ahangar\",\"doi\":\"10.22108/TOC.2020.120014.1684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎A  2-rainbow dominating function (2RDF) of a graph $G$ is a‎ ‎function $f$ from the vertex set $V(G)$ to the set of all subsets‎ ‎of the set ${1,2}$ such that for any vertex $vin V(G)$ with‎ ‎$f(v)=emptyset$ the condition $bigcup_{uin N(v)}f(u)={1,2}$‎ ‎is fulfilled‎, ‎where $N(v)$ is the open neighborhood of $v$‎. ‎A ‎ ‎maximal 2-rainbow dominating function of a graph $G$ is a ‎‎$‎‎2‎$‎-rainbow dominating function $f$ such that the set ${win‎‎V(G)|f(w)=emptyset}$ is not a dominating set of $G$‎. ‎The‎ ‎weight of a maximal 2RDF $f$ is the value $omega(f)=sum_{vin‎ ‎V}|f (v)|$‎. ‎The  maximal $2$-rainbow domination number of a‎ ‎graph $G$‎, ‎denoted by $gamma_{m2r}(G)$‎, ‎is the minimum weight of a‎ ‎maximal 2RDF of $G$‎. ‎In this paper‎, ‎we continue the study of maximal‎ ‎2-rainbow domination {number} in graphs‎. ‎Specially‎, ‎we first characterize all graphs with large‎ ‎maximal 2-rainbow domination number‎. ‎Finally‎, ‎we determine the maximal ‎$‎2‎$‎‎-‎rainbow domination number in the sun and sunlet graphs‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"9 1\",\"pages\":\"201-210\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.120014.1684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.120014.1684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

‎图$G$的2-彩虹支配函数(2RDF)是‎ ‎从顶点集$V(G)$到所有子集集的函数$f$‎ ‎使得对于任何顶点$vin V(G)$‎ ‎$f(v)=emptyset$条件$bigcup_{uinN(v)}f(u)={1,2}$‎ ‎已完成‎, ‎其中$N(v)$是$v的开邻域$‎. ‎A.‎ ‎图$G$的最大2-彩虹支配函数是‎‎$‎‎2.‎$‎-彩虹支配函数$f$使得集合${win‎‎V(G)|f(w)=emptyset}$不是$G的支配集$‎. ‎这个‎ ‎最大2RDF$f$的权重是值$omega(f)=sum_{vin‎ ‎V} |f(V)|$‎. ‎a的最大$2$-彩虹支配数‎ ‎图形$G$‎, ‎表示为$gamma_{m2r}(G)$‎, ‎是‎ ‎最大2RDF为$G$‎. ‎在本文中‎, ‎我们继续研究极大‎ ‎图中的2-彩虹控制{数}‎. ‎特别是‎, ‎我们首先用大‎ ‎最大2-彩虹支配数‎. ‎最后‎, ‎我们确定最大‎$‎2.‎$‎‎-‎太阳图和小太阳图中的彩虹控制数‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further results on maximal rainbow domination number
‎A  2-rainbow dominating function (2RDF) of a graph $G$ is a‎ ‎function $f$ from the vertex set $V(G)$ to the set of all subsets‎ ‎of the set ${1,2}$ such that for any vertex $vin V(G)$ with‎ ‎$f(v)=emptyset$ the condition $bigcup_{uin N(v)}f(u)={1,2}$‎ ‎is fulfilled‎, ‎where $N(v)$ is the open neighborhood of $v$‎. ‎A ‎ ‎maximal 2-rainbow dominating function of a graph $G$ is a ‎‎$‎‎2‎$‎-rainbow dominating function $f$ such that the set ${win‎‎V(G)|f(w)=emptyset}$ is not a dominating set of $G$‎. ‎The‎ ‎weight of a maximal 2RDF $f$ is the value $omega(f)=sum_{vin‎ ‎V}|f (v)|$‎. ‎The  maximal $2$-rainbow domination number of a‎ ‎graph $G$‎, ‎denoted by $gamma_{m2r}(G)$‎, ‎is the minimum weight of a‎ ‎maximal 2RDF of $G$‎. ‎In this paper‎, ‎we continue the study of maximal‎ ‎2-rainbow domination {number} in graphs‎. ‎Specially‎, ‎we first characterize all graphs with large‎ ‎maximal 2-rainbow domination number‎. ‎Finally‎, ‎we determine the maximal ‎$‎2‎$‎‎-‎rainbow domination number in the sun and sunlet graphs‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信