一种用于混合多区域互联微电网频率调节的新型优化FOPIDA-FOIDN控制器

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Nessma M. Ahmed, Mohamed Ebeed, G. Magdy, Khairy Sayed, S. Gamoura, A. M. Metwally, Alaa A. Mahmoud
{"title":"一种用于混合多区域互联微电网频率调节的新型优化FOPIDA-FOIDN控制器","authors":"Nessma M. Ahmed, Mohamed Ebeed, G. Magdy, Khairy Sayed, S. Gamoura, A. M. Metwally, Alaa A. Mahmoud","doi":"10.3390/fractalfract7090666","DOIUrl":null,"url":null,"abstract":"This paper proposes a combined feedback and feed-forward control system to support the frequency regulation of multi-area interconnected hybrid microgrids considering renewable energy sources (RESs). The proposed control system is based on a fractional-order proportional-integral-derivative-accelerated (FOPIDA) controller in the feed-forward direction and a fractional-order integral-derivative with a low-pass filter compensator (FOIDN) controller in the feedback direction, referred to as a FOPIDA-FOIDN controller. Moreover, the parameters of the proposed FOPIDA-FOIDN controller (i.e., twelve parameters in each area) are optimally tuned using a proposed hybrid of two metaheuristic optimization algorithms, i.e., hybrid artificial gorilla troops optimizer (AGTO) and equilibrium optimizer (EO), and this hybrid is referred to as HGTOEO. The robustness and reliability of the proposed control system are validated by evaluating its performance in comparison to that of other counterparts’ controllers utilized in the literature, such as PID, FOPID, and tilt integral derivative (TID) controller, under the different operating conditions of the studied system. Furthermore, the proficiency of the proposed HGTOEO algorithm is checked against other powerful optimizers, such as the genetic algorithm, Jaya algorithm, improved Jaya algorithm, multi-verse optimizer, and cost-effective multi-verse optimizer, to optimally design the PID controller for the load frequency control of the studied two-area interconnected microgrid. The MATLAB simulation results demonstrate the viability and dependability of the proposed FOPIDA-FOIDN controller based on the HGTOEO algorithm under a variety of load perturbations and random production of RESs.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Optimized FOPIDA-FOIDN Controller for the Frequency Regulation of Hybrid Multi-Area Interconnected Microgrids\",\"authors\":\"Nessma M. Ahmed, Mohamed Ebeed, G. Magdy, Khairy Sayed, S. Gamoura, A. M. Metwally, Alaa A. Mahmoud\",\"doi\":\"10.3390/fractalfract7090666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a combined feedback and feed-forward control system to support the frequency regulation of multi-area interconnected hybrid microgrids considering renewable energy sources (RESs). The proposed control system is based on a fractional-order proportional-integral-derivative-accelerated (FOPIDA) controller in the feed-forward direction and a fractional-order integral-derivative with a low-pass filter compensator (FOIDN) controller in the feedback direction, referred to as a FOPIDA-FOIDN controller. Moreover, the parameters of the proposed FOPIDA-FOIDN controller (i.e., twelve parameters in each area) are optimally tuned using a proposed hybrid of two metaheuristic optimization algorithms, i.e., hybrid artificial gorilla troops optimizer (AGTO) and equilibrium optimizer (EO), and this hybrid is referred to as HGTOEO. The robustness and reliability of the proposed control system are validated by evaluating its performance in comparison to that of other counterparts’ controllers utilized in the literature, such as PID, FOPID, and tilt integral derivative (TID) controller, under the different operating conditions of the studied system. Furthermore, the proficiency of the proposed HGTOEO algorithm is checked against other powerful optimizers, such as the genetic algorithm, Jaya algorithm, improved Jaya algorithm, multi-verse optimizer, and cost-effective multi-verse optimizer, to optimally design the PID controller for the load frequency control of the studied two-area interconnected microgrid. The MATLAB simulation results demonstrate the viability and dependability of the proposed FOPIDA-FOIDN controller based on the HGTOEO algorithm under a variety of load perturbations and random production of RESs.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7090666\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7090666","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种反馈与前馈相结合的控制系统,以支持考虑可再生能源的多区域互联混合微电网的频率调节。所提出的控制系统基于前馈方向的分数阶比例-积分-导数加速(FOPIDA)控制器和反馈方向的分数阶积分-导数与低通滤波器补偿器(FOIDN)控制器,称为FOPIDA-FOIDN控制器。此外,所提出的FOPIDA-FOIDN控制器的参数(即每个区域有12个参数)使用所提出的混合元启发式优化算法,即混合人工大猩猩部队优化器(AGTO)和平衡优化器(EO),这种混合算法被称为HGTOEO。通过与文献中使用的其他同类控制器(如PID、FOPID和倾斜积分导数(TID)控制器)在研究系统的不同运行条件下的性能进行比较,验证了所提出控制系统的鲁棒性和可靠性。此外,通过对遗传算法、Jaya算法、改进型Jaya算法、多域优化器、高性价比多域优化器等优化算法的验证,优化设计了两区互联微电网负载频率控制的PID控制器。MATLAB仿真结果验证了基于HGTOEO算法的FOPIDA-FOIDN控制器在各种负载扰动和RESs随机产生下的可行性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Optimized FOPIDA-FOIDN Controller for the Frequency Regulation of Hybrid Multi-Area Interconnected Microgrids
This paper proposes a combined feedback and feed-forward control system to support the frequency regulation of multi-area interconnected hybrid microgrids considering renewable energy sources (RESs). The proposed control system is based on a fractional-order proportional-integral-derivative-accelerated (FOPIDA) controller in the feed-forward direction and a fractional-order integral-derivative with a low-pass filter compensator (FOIDN) controller in the feedback direction, referred to as a FOPIDA-FOIDN controller. Moreover, the parameters of the proposed FOPIDA-FOIDN controller (i.e., twelve parameters in each area) are optimally tuned using a proposed hybrid of two metaheuristic optimization algorithms, i.e., hybrid artificial gorilla troops optimizer (AGTO) and equilibrium optimizer (EO), and this hybrid is referred to as HGTOEO. The robustness and reliability of the proposed control system are validated by evaluating its performance in comparison to that of other counterparts’ controllers utilized in the literature, such as PID, FOPID, and tilt integral derivative (TID) controller, under the different operating conditions of the studied system. Furthermore, the proficiency of the proposed HGTOEO algorithm is checked against other powerful optimizers, such as the genetic algorithm, Jaya algorithm, improved Jaya algorithm, multi-verse optimizer, and cost-effective multi-verse optimizer, to optimally design the PID controller for the load frequency control of the studied two-area interconnected microgrid. The MATLAB simulation results demonstrate the viability and dependability of the proposed FOPIDA-FOIDN controller based on the HGTOEO algorithm under a variety of load perturbations and random production of RESs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信