Y. Zhukov, Jason S. Byers, Marty Davidson, Ken Kollman
{"title":"跨错位空间单元集成数据","authors":"Y. Zhukov, Jason S. Byers, Marty Davidson, Ken Kollman","doi":"10.1017/pan.2023.5","DOIUrl":null,"url":null,"abstract":"\n Theoretical units of interest often do not align with the spatial units at which data are available. This problem is pervasive in political science, particularly in subnational empirical research that requires integrating data across incompatible geographic units (e.g., administrative areas, electoral constituencies, and grid cells). Overcoming this challenge requires researchers not only to align the scale of empirical and theoretical units, but also to understand the consequences of this change of support for measurement error and statistical inference. We show how the accuracy of transformed values and the estimation of regression coefficients depend on the degree of nesting (i.e., whether units fall completely and neatly inside each other) and on the relative scale of source and destination units (i.e., aggregation, disaggregation, and hybrid). We introduce simple, nonparametric measures of relative nesting and scale, as ex ante indicators of spatial transformation complexity and error susceptibility. Using election data and Monte Carlo simulations, we show that these measures are strongly predictive of transformation quality across multiple change-of-support methods. We propose several validation procedures and provide open-source software to make transformation options more accessible, customizable, and intuitive.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrating Data Across Misaligned Spatial Units\",\"authors\":\"Y. Zhukov, Jason S. Byers, Marty Davidson, Ken Kollman\",\"doi\":\"10.1017/pan.2023.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Theoretical units of interest often do not align with the spatial units at which data are available. This problem is pervasive in political science, particularly in subnational empirical research that requires integrating data across incompatible geographic units (e.g., administrative areas, electoral constituencies, and grid cells). Overcoming this challenge requires researchers not only to align the scale of empirical and theoretical units, but also to understand the consequences of this change of support for measurement error and statistical inference. We show how the accuracy of transformed values and the estimation of regression coefficients depend on the degree of nesting (i.e., whether units fall completely and neatly inside each other) and on the relative scale of source and destination units (i.e., aggregation, disaggregation, and hybrid). We introduce simple, nonparametric measures of relative nesting and scale, as ex ante indicators of spatial transformation complexity and error susceptibility. Using election data and Monte Carlo simulations, we show that these measures are strongly predictive of transformation quality across multiple change-of-support methods. We propose several validation procedures and provide open-source software to make transformation options more accessible, customizable, and intuitive.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2023.5\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2023.5","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
Theoretical units of interest often do not align with the spatial units at which data are available. This problem is pervasive in political science, particularly in subnational empirical research that requires integrating data across incompatible geographic units (e.g., administrative areas, electoral constituencies, and grid cells). Overcoming this challenge requires researchers not only to align the scale of empirical and theoretical units, but also to understand the consequences of this change of support for measurement error and statistical inference. We show how the accuracy of transformed values and the estimation of regression coefficients depend on the degree of nesting (i.e., whether units fall completely and neatly inside each other) and on the relative scale of source and destination units (i.e., aggregation, disaggregation, and hybrid). We introduce simple, nonparametric measures of relative nesting and scale, as ex ante indicators of spatial transformation complexity and error susceptibility. Using election data and Monte Carlo simulations, we show that these measures are strongly predictive of transformation quality across multiple change-of-support methods. We propose several validation procedures and provide open-source software to make transformation options more accessible, customizable, and intuitive.
期刊介绍:
Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.