{"title":"微涡轮条件下空气中分离正庚烷液滴和热燃烧产物的自燃","authors":"Jiayi Wang, E. Mastorakos","doi":"10.1080/13647830.2022.2034976","DOIUrl":null,"url":null,"abstract":"Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20–100 is simulated using air at 4 atm and 700–1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100 droplets at low temperatures, but two-stage ignition is not observed.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":"26 1","pages":"541 - 559"},"PeriodicalIF":1.9000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Autoignition of isolated n-heptane droplets in air and hot combustion products at microturbine conditions\",\"authors\":\"Jiayi Wang, E. Mastorakos\",\"doi\":\"10.1080/13647830.2022.2034976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20–100 is simulated using air at 4 atm and 700–1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100 droplets at low temperatures, but two-stage ignition is not observed.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":\"26 1\",\"pages\":\"541 - 559\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2022.2034976\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2022.2034976","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Autoignition of isolated n-heptane droplets in air and hot combustion products at microturbine conditions
Spontaneous ignition of isolated n-heptane droplets with initial diameters of 20–100 is simulated using air at 4 atm and 700–1200 K, which includes the typical operating conditions of recuperated microturbines. Because some fuel droplets in a combustor may be sprayed or carried to near the recirculation zone, the simulations use a mixture of pure air and hot combustion products as the oxidiser. The flame structures, evaporation times, and autoignition times in both physical and mixture fraction spaces for the different conditions are presented and compared. The variables examined include the air preheat temperature, amount of dilution with hot products, initial fuel droplet diameter, oxidiser temperature, and oxygen concentration. The results show that droplets in pure air at microturbine conditions fully evaporate before ignition, suggesting that a prevaporised concept is suitable for microturbines. The dilution with hot combustion products decreases the ignition delay time mainly by raising the oxidiser temperature. Low-temperature chemistry does not have a significant effect on droplet ignition because adding even a small amount of hot combustion products can increase the oxidiser temperature to higher than the temperatures favourable for low-temperature kinetics. The cool flame is only observed for 100 droplets at low temperatures, but two-stage ignition is not observed.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.