分而治之:经络的起源与增殖

IF 6 2区 生物学 Q1 PLANT SCIENCES
Michael F Schwartz, R. Peters, Aitch Hunt, Abdul-Khaliq Abdul-Matin, Lisa Van den Broeck, Rosangela Sozzani
{"title":"分而治之:经络的起源与增殖","authors":"Michael F Schwartz, R. Peters, Aitch Hunt, Abdul-Khaliq Abdul-Matin, Lisa Van den Broeck, Rosangela Sozzani","doi":"10.1080/07352689.2021.1915228","DOIUrl":null,"url":null,"abstract":"Abstract In contrast to animals, which complete organogenesis early in their development, plants continuously produce organs, and structures throughout their entire lifecycle. Plants achieve the continuous growth of organs through the initiation and maintenance of meristems that populate the plant body. Plants contain two apical meristems, one at the shoot and one root, to produce the lateral organs of the shoot and the cell files of the root, respectively. Additional meristems within the plant produce branches while others produce the cell types within the vasculature system. Throughout development, plants must balance producing organs and maintaining their meristems, which requires tightly controlled regulations. This review focuses on the various plant meristems, how cells within these meristems maintain their identity, and particularly the molecular players that regulate stem cell maintenance. In addition, we summarize cell types which share molecular features with meristems, but do not follow the same rules regarding maintenance, including pericycle and rachis founder cells. Together, these populations of cells contribute to the entire organogenesis of plants.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"40 1","pages":"147 - 156"},"PeriodicalIF":6.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2021.1915228","citationCount":"4","resultStr":"{\"title\":\"Divide and Conquer: The Initiation and Proliferation of Meristems\",\"authors\":\"Michael F Schwartz, R. Peters, Aitch Hunt, Abdul-Khaliq Abdul-Matin, Lisa Van den Broeck, Rosangela Sozzani\",\"doi\":\"10.1080/07352689.2021.1915228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In contrast to animals, which complete organogenesis early in their development, plants continuously produce organs, and structures throughout their entire lifecycle. Plants achieve the continuous growth of organs through the initiation and maintenance of meristems that populate the plant body. Plants contain two apical meristems, one at the shoot and one root, to produce the lateral organs of the shoot and the cell files of the root, respectively. Additional meristems within the plant produce branches while others produce the cell types within the vasculature system. Throughout development, plants must balance producing organs and maintaining their meristems, which requires tightly controlled regulations. This review focuses on the various plant meristems, how cells within these meristems maintain their identity, and particularly the molecular players that regulate stem cell maintenance. In addition, we summarize cell types which share molecular features with meristems, but do not follow the same rules regarding maintenance, including pericycle and rachis founder cells. Together, these populations of cells contribute to the entire organogenesis of plants.\",\"PeriodicalId\":10854,\"journal\":{\"name\":\"Critical Reviews in Plant Sciences\",\"volume\":\"40 1\",\"pages\":\"147 - 156\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07352689.2021.1915228\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07352689.2021.1915228\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2021.1915228","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

与动物在发育早期完成器官发生不同,植物在其整个生命周期中不断地产生器官和结构。植物通过形成和维持植物体内的分生组织来实现器官的持续生长。植物有两个顶端分生组织,一个在茎部,一个在根部,分别产生茎部的侧边器官和根的细胞锉。植物中的其他分生组织产生分支,而其他分生组织产生脉管系统中的细胞类型。在整个发育过程中,植物必须平衡生产器官和维持其分生组织,这需要严格控制的调节。本文综述了植物的各种分生组织,这些分生组织中的细胞如何维持其身份,特别是调节干细胞维持的分子参与者。此外,我们总结了与分生组织具有相同分子特征,但在维持方面不遵循相同规则的细胞类型,包括中柱鞘细胞和轴奠基细胞。这些细胞群共同促成了植物的整个器官发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divide and Conquer: The Initiation and Proliferation of Meristems
Abstract In contrast to animals, which complete organogenesis early in their development, plants continuously produce organs, and structures throughout their entire lifecycle. Plants achieve the continuous growth of organs through the initiation and maintenance of meristems that populate the plant body. Plants contain two apical meristems, one at the shoot and one root, to produce the lateral organs of the shoot and the cell files of the root, respectively. Additional meristems within the plant produce branches while others produce the cell types within the vasculature system. Throughout development, plants must balance producing organs and maintaining their meristems, which requires tightly controlled regulations. This review focuses on the various plant meristems, how cells within these meristems maintain their identity, and particularly the molecular players that regulate stem cell maintenance. In addition, we summarize cell types which share molecular features with meristems, but do not follow the same rules regarding maintenance, including pericycle and rachis founder cells. Together, these populations of cells contribute to the entire organogenesis of plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.90
自引率
1.40%
发文量
15
审稿时长
>12 weeks
期刊介绍: Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信