{"title":"一个改进的关于贝斯科维奇集的Hausdorff维数的界","authors":"N. Katz, Joshua Zahl","doi":"10.1090/jams/907","DOIUrl":null,"url":null,"abstract":"<p>We prove that every Besicovitch set in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> must have Hausdorff dimension at least <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 slash 2 plus epsilon 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>5</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">5/2+\\epsilon _0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for some small constant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon 0 greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\epsilon _0>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper L 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>SL</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {SL}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 slash 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>5</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">5/2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We believe this example may be an interesting object for future study.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/907","citationCount":"41","resultStr":"{\"title\":\"An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³\",\"authors\":\"N. Katz, Joshua Zahl\",\"doi\":\"10.1090/jams/907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every Besicovitch set in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R cubed\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> must have Hausdorff dimension at least <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5 slash 2 plus epsilon 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>5</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5/2+\\\\epsilon _0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for some small constant <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon 0 greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon _0>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S upper L 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>SL</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {SL}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5 slash 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>5</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5/2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We believe this example may be an interesting object for future study.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/907\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/907\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/907","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³
We prove that every Besicovitch set in R3\mathbb {R}^3 must have Hausdorff dimension at least 5/2+ϵ05/2+\epsilon _0 for some small constant ϵ0>0\epsilon _0>0. This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the SL2\operatorname {SL}_2 example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension 5/25/2. We believe this example may be an interesting object for future study.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.