一个改进的关于贝斯科维奇集的Hausdorff维数的界

IF 3.5 1区 数学 Q1 MATHEMATICS
N. Katz, Joshua Zahl
{"title":"一个改进的关于贝斯科维奇集的Hausdorff维数的界","authors":"N. Katz, Joshua Zahl","doi":"10.1090/jams/907","DOIUrl":null,"url":null,"abstract":"<p>We prove that every Besicovitch set in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> must have Hausdorff dimension at least <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 slash 2 plus epsilon 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>5</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">5/2+\\epsilon _0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for some small constant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon 0 greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\epsilon _0>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper L 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>SL</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {SL}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 slash 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>5</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">5/2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We believe this example may be an interesting object for future study.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/907","citationCount":"41","resultStr":"{\"title\":\"An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³\",\"authors\":\"N. Katz, Joshua Zahl\",\"doi\":\"10.1090/jams/907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every Besicovitch set in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R cubed\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> must have Hausdorff dimension at least <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5 slash 2 plus epsilon 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>5</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:msub>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5/2+\\\\epsilon _0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for some small constant <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon 0 greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>ϵ<!-- ϵ --></mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon _0>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S upper L 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>SL</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {SL}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5 slash 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>5</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5/2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We believe this example may be an interesting object for future study.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/907\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/907\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/907","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 41

摘要

我们证明了R 3\mathbb{R}^3中的每个Besicovich集对于一些小常数ε0>0\ε0>0必须具有至少5/2+ε0 5/2+\ε_0的Hausdorff维数。这源于关于满足Wolff公理的管的并集的体积的更一般的结果。我们的证明与Kakeya猜想的一个新的“几乎反例”有关,我们称之为SL 2\算子名{SL}_2实例该对象类似于具有Minkowski维数3但Hausdorff维数5/2 5/2的Besicovitch集合。我们相信这个例子可能是未来研究的一个有趣的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³

We prove that every Besicovitch set in R 3 \mathbb {R}^3 must have Hausdorff dimension at least 5 / 2 + ϵ 0 5/2+\epsilon _0 for some small constant ϵ 0 > 0 \epsilon _0>0 . This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the SL 2 \operatorname {SL}_2 example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension 5 / 2 5/2 . We believe this example may be an interesting object for future study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信