{"title":"非局部弹性半空间上瑞利波的渐近公式","authors":"D. Prikazchikov","doi":"10.3390/vibration6010005","DOIUrl":null,"url":null,"abstract":"This paper deals with the Rayleigh wave, propagating on a nonlocally elastic, linearly isotropic half-space, excited by a prescribed surface loading. The consideration develops the methodology of hyperbolic–elliptic models for Rayleigh and Rayleigh-type waves, and relies on the effective boundary conditions formulated recently, accounting for the crucial contributions of the nonlocal boundary layer. A slow-time perturbation scheme is established, leading to the reduced model for the Rayleigh wave field, comprised of a singularly perturbed hyperbolic equation for the longitudinal wave potential on the surface, acting as a boundary condition for the elliptic equation governing the decay over the interior. An equivalent alternative formulation involving a pseudo-differential operator acting on the loading terms, with parametric dependence on the depth coordinate, is also presented.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space\",\"authors\":\"D. Prikazchikov\",\"doi\":\"10.3390/vibration6010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the Rayleigh wave, propagating on a nonlocally elastic, linearly isotropic half-space, excited by a prescribed surface loading. The consideration develops the methodology of hyperbolic–elliptic models for Rayleigh and Rayleigh-type waves, and relies on the effective boundary conditions formulated recently, accounting for the crucial contributions of the nonlocal boundary layer. A slow-time perturbation scheme is established, leading to the reduced model for the Rayleigh wave field, comprised of a singularly perturbed hyperbolic equation for the longitudinal wave potential on the surface, acting as a boundary condition for the elliptic equation governing the decay over the interior. An equivalent alternative formulation involving a pseudo-differential operator acting on the loading terms, with parametric dependence on the depth coordinate, is also presented.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration6010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space
This paper deals with the Rayleigh wave, propagating on a nonlocally elastic, linearly isotropic half-space, excited by a prescribed surface loading. The consideration develops the methodology of hyperbolic–elliptic models for Rayleigh and Rayleigh-type waves, and relies on the effective boundary conditions formulated recently, accounting for the crucial contributions of the nonlocal boundary layer. A slow-time perturbation scheme is established, leading to the reduced model for the Rayleigh wave field, comprised of a singularly perturbed hyperbolic equation for the longitudinal wave potential on the surface, acting as a boundary condition for the elliptic equation governing the decay over the interior. An equivalent alternative formulation involving a pseudo-differential operator acting on the loading terms, with parametric dependence on the depth coordinate, is also presented.