关于无穷三对角矩阵定义算子的紧致性和本质范数

IF 0.3 Q4 MATHEMATICS
Alexander Caicedo, J. Ramos-Fernández, M. Salas-Brown
{"title":"关于无穷三对角矩阵定义算子的紧致性和本质范数","authors":"Alexander Caicedo, J. Ramos-Fernández, M. Salas-Brown","doi":"10.1515/conop-2022-0143","DOIUrl":null,"url":null,"abstract":"Abstract In this article, all sequences u {\\boldsymbol{u}} , v {\\boldsymbol{v}} , and w {\\boldsymbol{w}} that define continuous and compact tridiagonal operators T u , v , w {T}_{u,v,w} acting on the weighted sequence space l β 2 {l}_{\\beta }^{2} were characterized. Additionally, the essential norm of this operator, and as an important consequence of our results, the essential norm of multiplication operator M u {M}_{u} acting on l β 2 {l}_{\\beta }^{2} spaces was calculated.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"10 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the compactness and the essential norm of operators defined by infinite tridiagonal matrices\",\"authors\":\"Alexander Caicedo, J. Ramos-Fernández, M. Salas-Brown\",\"doi\":\"10.1515/conop-2022-0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, all sequences u {\\\\boldsymbol{u}} , v {\\\\boldsymbol{v}} , and w {\\\\boldsymbol{w}} that define continuous and compact tridiagonal operators T u , v , w {T}_{u,v,w} acting on the weighted sequence space l β 2 {l}_{\\\\beta }^{2} were characterized. Additionally, the essential norm of this operator, and as an important consequence of our results, the essential norm of multiplication operator M u {M}_{u} acting on l β 2 {l}_{\\\\beta }^{2} spaces was calculated.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2022-0143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2022-0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文刻画了所有序列u {\boldsymbol{u}}、v {\boldsymbol{v}}和w {\boldsymbol{w}},它们定义了作用于加权序列空间l β 2 {l}_{\beta}^{2}上的连续紧三对角算子T u,v,w {T}_{u,v,w}。此外,还计算了该算子的本质范数,并作为我们的结果的一个重要推论,计算了作用于1 β 2 {l}_{\beta}^{2}空间的乘法算子M {M}_{u}的本质范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the compactness and the essential norm of operators defined by infinite tridiagonal matrices
Abstract In this article, all sequences u {\boldsymbol{u}} , v {\boldsymbol{v}} , and w {\boldsymbol{w}} that define continuous and compact tridiagonal operators T u , v , w {T}_{u,v,w} acting on the weighted sequence space l β 2 {l}_{\beta }^{2} were characterized. Additionally, the essential norm of this operator, and as an important consequence of our results, the essential norm of multiplication operator M u {M}_{u} acting on l β 2 {l}_{\beta }^{2} spaces was calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信