{"title":"非阿基米德环的k理论2","authors":"M. Kerz, S. Saito, Georg Tamme","doi":"10.1017/nmj.2023.4","DOIUrl":null,"url":null,"abstract":"Abstract We study fundamental properties of analytic K-theory of Tate rings such as homotopy invariance, Bass fundamental theorem, Milnor excision, and descent for admissible coverings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"K-THEORY OF NON-ARCHIMEDEAN RINGS II\",\"authors\":\"M. Kerz, S. Saito, Georg Tamme\",\"doi\":\"10.1017/nmj.2023.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study fundamental properties of analytic K-theory of Tate rings such as homotopy invariance, Bass fundamental theorem, Milnor excision, and descent for admissible coverings.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract We study fundamental properties of analytic K-theory of Tate rings such as homotopy invariance, Bass fundamental theorem, Milnor excision, and descent for admissible coverings.