初等函数的逆Holder不等式

Q3 Mathematics
A.O. Korenovskii
{"title":"初等函数的逆Holder不等式","authors":"A.O. Korenovskii","doi":"10.30970/ms.56.1.28-38","DOIUrl":null,"url":null,"abstract":"For a positive function $f$ on the interval $[0,1]$, the power mean of order $p\\in\\mathbb R$ is defined by \n\\smallskip\\centerline{$\\displaystyle\\|\\, f\\,\\|_p=\\left(\\int_0^1 f^p(x)\\,dx\\right)^{1/p}\\quad(p\\ne0),\\qquad\\|\\, f\\,\\|_0=\\exp\\left(\\int_0^1\\ln f(x)\\,dx\\right).$} \nAssume that $0<A<B$, $0<\\theta<1$ and consider the step function$g_{A<B,\\theta}=B\\cdot\\chi_{[0,\\theta)}+A\\cdot\\chi_{[\\theta,1]}$, where $\\chi_E$ is the characteristic function of the set $E$. \nLet $-\\infty<p<q<+\\infty$. The main result of this work consists in finding the term \n\\smallskip\\centerline{$\\displaystyleC_{p<q,A<B}=\\max\\limits_{0\\le\\theta\\le1}\\frac{\\|\\,g_{A<B,\\theta}\\,\\|_q}{\\|\\,g_{A<B,\\theta}\\,\\|_p}.$} \n\\smallskip For fixed $p<q$, we study the behaviour of $C_{p<q,A<B}$ and $\\theta_{p<q,A<B}$ with respect to $\\beta=B/A\\in(1,+\\infty)$.The cases $p=0$ or $q=0$ are considered separately. \nThe results of this work can be used in the study of the extremal properties of classes of functions, which satisfy the inverse H\\\"older inequality, e.g. the Muckenhoupt and Gehring ones. For functions from the Gurov-Reshetnyak classes, a similar problem has been investigated in~[4].","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The reverse Holder inequality for an elementary function\",\"authors\":\"A.O. Korenovskii\",\"doi\":\"10.30970/ms.56.1.28-38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a positive function $f$ on the interval $[0,1]$, the power mean of order $p\\\\in\\\\mathbb R$ is defined by \\n\\\\smallskip\\\\centerline{$\\\\displaystyle\\\\|\\\\, f\\\\,\\\\|_p=\\\\left(\\\\int_0^1 f^p(x)\\\\,dx\\\\right)^{1/p}\\\\quad(p\\\\ne0),\\\\qquad\\\\|\\\\, f\\\\,\\\\|_0=\\\\exp\\\\left(\\\\int_0^1\\\\ln f(x)\\\\,dx\\\\right).$} \\nAssume that $0<A<B$, $0<\\\\theta<1$ and consider the step function$g_{A<B,\\\\theta}=B\\\\cdot\\\\chi_{[0,\\\\theta)}+A\\\\cdot\\\\chi_{[\\\\theta,1]}$, where $\\\\chi_E$ is the characteristic function of the set $E$. \\nLet $-\\\\infty<p<q<+\\\\infty$. The main result of this work consists in finding the term \\n\\\\smallskip\\\\centerline{$\\\\displaystyleC_{p<q,A<B}=\\\\max\\\\limits_{0\\\\le\\\\theta\\\\le1}\\\\frac{\\\\|\\\\,g_{A<B,\\\\theta}\\\\,\\\\|_q}{\\\\|\\\\,g_{A<B,\\\\theta}\\\\,\\\\|_p}.$} \\n\\\\smallskip For fixed $p<q$, we study the behaviour of $C_{p<q,A<B}$ and $\\\\theta_{p<q,A<B}$ with respect to $\\\\beta=B/A\\\\in(1,+\\\\infty)$.The cases $p=0$ or $q=0$ are considered separately. \\nThe results of this work can be used in the study of the extremal properties of classes of functions, which satisfy the inverse H\\\\\\\"older inequality, e.g. the Muckenhoupt and Gehring ones. For functions from the Gurov-Reshetnyak classes, a similar problem has been investigated in~[4].\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.56.1.28-38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.1.28-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

对于正函数 $f$ 在间隔上 $[0,1]$,权力意味着秩序 $p\in\mathbb R$ 定义为 \smallskip\centerline{$\displaystyle\|\, f\,\|_p=\left(\int_0^1 f^p(x)\,dx\right)^{1/p}\quad(p\ne0),\qquad\|\, f\,\|_0=\exp\left(\int_0^1\ln f(x)\,dx\right).$} 假设 $0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
The reverse Holder inequality for an elementary function
For a positive function $f$ on the interval $[0,1]$, the power mean of order $p\in\mathbb R$ is defined by \smallskip\centerline{$\displaystyle\|\, f\,\|_p=\left(\int_0^1 f^p(x)\,dx\right)^{1/p}\quad(p\ne0),\qquad\|\, f\,\|_0=\exp\left(\int_0^1\ln f(x)\,dx\right).$} Assume that $0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信