随机系统的刘维尔方程

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
M. Jornet
{"title":"随机系统的刘维尔方程","authors":"M. Jornet","doi":"10.1080/07362994.2021.1980015","DOIUrl":null,"url":null,"abstract":"Abstract Given a random system, a Liouville’s equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville’s equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville’s equations for path-wise stochastic integrals and nonlinear random ordinary differential equations.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"40 1","pages":"1026 - 1047"},"PeriodicalIF":0.8000,"publicationDate":"2021-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Liouville’s equations for random systems\",\"authors\":\"M. Jornet\",\"doi\":\"10.1080/07362994.2021.1980015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given a random system, a Liouville’s equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville’s equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville’s equations for path-wise stochastic integrals and nonlinear random ordinary differential equations.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"40 1\",\"pages\":\"1026 - 1047\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2021.1980015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2021.1980015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

摘要给定一个随机系统,刘方程是一个精确的偏微分方程,它描述了解的概率密度函数的演化。本文导出了一阶齐次双线性随机偏微分方程的Liouville方程。这是对随机场解的所有有限维分布进行的,从一维开始,然后是二维,最后推广到任何维。给出了几个例子,包括具有随机系数的线性平流方程。作为推论,我们推导了路径随机积分和非线性随机常微分方程的刘维尔方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville’s equations for random systems
Abstract Given a random system, a Liouville’s equation is an exact partial differential equation that describes the evolution of the probability density function of the solution. In this article, we derive Liouville’s equations for the first-order homogeneous semilinear random partial differential equation. This is done for all finite-dimensional distributions of the random field solution, starting with dimension one, then dimension two, and finally generalizing to any dimension. Several examples, including the linear advection equation with random coefficients, are treated. As a corollary, we deduce Liouville’s equations for path-wise stochastic integrals and nonlinear random ordinary differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信