{"title":"复合Poisson和的次指数密度与随机游动的上确界","authors":"Takaaki Shimura, Toshiro Watanabe","doi":"10.1215/21562261-2022-0041","DOIUrl":null,"url":null,"abstract":"We characterize the subexponential densities on $(0,\\infty)$ for compound Poisson distributions on $[0,\\infty)$ with absolutely continuous Levy measures. As a corollary, we show that the class of all subexponential probability density functions on $\\mathbb R_+$ is closed under generalized convolution roots of compound Poisson sums. Moreover, we give an application to the subexponential density on $(0,\\infty)$ for the distribution of the supremum of a random walk.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Subexponential densities of compound Poisson sums and the supremum of a random walk\",\"authors\":\"Takaaki Shimura, Toshiro Watanabe\",\"doi\":\"10.1215/21562261-2022-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the subexponential densities on $(0,\\\\infty)$ for compound Poisson distributions on $[0,\\\\infty)$ with absolutely continuous Levy measures. As a corollary, we show that the class of all subexponential probability density functions on $\\\\mathbb R_+$ is closed under generalized convolution roots of compound Poisson sums. Moreover, we give an application to the subexponential density on $(0,\\\\infty)$ for the distribution of the supremum of a random walk.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Subexponential densities of compound Poisson sums and the supremum of a random walk
We characterize the subexponential densities on $(0,\infty)$ for compound Poisson distributions on $[0,\infty)$ with absolutely continuous Levy measures. As a corollary, we show that the class of all subexponential probability density functions on $\mathbb R_+$ is closed under generalized convolution roots of compound Poisson sums. Moreover, we give an application to the subexponential density on $(0,\infty)$ for the distribution of the supremum of a random walk.
期刊介绍:
The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.