具有Atangana-Baleanu分数阶导数的分数阶微分方程:分析与应用

Q1 Mathematics
M.I. Syam , Mohammed Al-Refai
{"title":"具有Atangana-Baleanu分数阶导数的分数阶微分方程:分析与应用","authors":"M.I. Syam ,&nbsp;Mohammed Al-Refai","doi":"10.1016/j.csfx.2019.100013","DOIUrl":null,"url":null,"abstract":"<div><p>We study linear and nonlinear fractional differential equations of order 0 &lt; <em>α</em> &lt; 1, involving the Atangana–Baleanu fractional derivative. We establish existence and uniqueness results to the linear and nonlinear problems using Banach fixed point theorem. We then develop a numerical technique based on the Chebyshev collocation method to solve the problem. As an important application we consider the fractional Riccati equation. Two examples are presented to test the efficiency of the proposed technique, where a notable agreement between the approximate and the exact solutions is obtained. Also, the approximate solutions approach to the exact solutions of the corresponding ordinary differential equations as the fractional derivative approaches 1.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"2 ","pages":"Article 100013"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2019.100013","citationCount":"58","resultStr":"{\"title\":\"Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and applications\",\"authors\":\"M.I. Syam ,&nbsp;Mohammed Al-Refai\",\"doi\":\"10.1016/j.csfx.2019.100013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study linear and nonlinear fractional differential equations of order 0 &lt; <em>α</em> &lt; 1, involving the Atangana–Baleanu fractional derivative. We establish existence and uniqueness results to the linear and nonlinear problems using Banach fixed point theorem. We then develop a numerical technique based on the Chebyshev collocation method to solve the problem. As an important application we consider the fractional Riccati equation. Two examples are presented to test the efficiency of the proposed technique, where a notable agreement between the approximate and the exact solutions is obtained. Also, the approximate solutions approach to the exact solutions of the corresponding ordinary differential equations as the fractional derivative approaches 1.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"2 \",\"pages\":\"Article 100013\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2019.100013\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054419300119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054419300119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 58

摘要

我们研究了0阶线性和非线性分数阶微分方程 < α < 1,涉及Atangana-Baleanu分数阶导数。利用Banach不动点定理,建立了线性和非线性问题的存在唯一性结果。然后,我们开发了一种基于切比雪夫配点法的数值技术来解决这个问题。作为一个重要的应用,我们考虑分数阶里卡第方程。通过两个实例验证了所提方法的有效性,得到了近似解和精确解之间的显著一致性。同样,当分数阶导数趋于1时,相应的常微分方程的精确解的近似解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and applications

We study linear and nonlinear fractional differential equations of order 0 < α < 1, involving the Atangana–Baleanu fractional derivative. We establish existence and uniqueness results to the linear and nonlinear problems using Banach fixed point theorem. We then develop a numerical technique based on the Chebyshev collocation method to solve the problem. As an important application we consider the fractional Riccati equation. Two examples are presented to test the efficiency of the proposed technique, where a notable agreement between the approximate and the exact solutions is obtained. Also, the approximate solutions approach to the exact solutions of the corresponding ordinary differential equations as the fractional derivative approaches 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信