具有混合两点边界条件的半线性双曲型系统最优控制问题的时域分解

Q4 Engineering
Richard Krug, G. Leugering, Alexander Martin, Martin Schmidt, Dieter Weninger
{"title":"具有混合两点边界条件的半线性双曲型系统最优控制问题的时域分解","authors":"Richard Krug, G. Leugering, Alexander Martin, Martin Schmidt, Dieter Weninger","doi":"10.1137/20m138329x","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations and provide an in-depth well-posedness analysis. This is a continuation of our work, Krug et al. (2021) in that we now consider mixed two-point boundary value problems. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems on metric graphs with cycles. We design an iterative method based on the optimality systems that can be interpreted as a decomposition method for the original optimal control problem into virtual control problems on smaller time domains.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"427 - 455"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-domain decomposition for optimal control problems governed by semilinear hyperbolic systems with mixed two-point boundary conditions\",\"authors\":\"Richard Krug, G. Leugering, Alexander Martin, Martin Schmidt, Dieter Weninger\",\"doi\":\"10.1137/20m138329x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations and provide an in-depth well-posedness analysis. This is a continuation of our work, Krug et al. (2021) in that we now consider mixed two-point boundary value problems. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems on metric graphs with cycles. We design an iterative method based on the optimality systems that can be interpreted as a decomposition method for the original optimal control problem into virtual control problems on smaller time domains.\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"50 1\",\"pages\":\"427 - 455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m138329x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m138329x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文研究了半线性双曲方程组最优控制问题的时域分解,并对其适定性进行了深入分析。这是我们工作的延续,Krug等人(2021),因为我们现在考虑混合两点边值问题。更一般的边界条件显著地扩大了应用范围,例如,对于具有循环的度量图上的双曲问题。我们设计了一种基于最优性系统的迭代方法,该方法可以解释为将原始最优控制问题分解为较小时域上的虚拟控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-domain decomposition for optimal control problems governed by semilinear hyperbolic systems with mixed two-point boundary conditions
Abstract In this article, we study the time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations and provide an in-depth well-posedness analysis. This is a continuation of our work, Krug et al. (2021) in that we now consider mixed two-point boundary value problems. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems on metric graphs with cycles. We design an iterative method based on the optimality systems that can be interpreted as a decomposition method for the original optimal control problem into virtual control problems on smaller time domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信