{"title":"有限交换环的湮灭子图","authors":"Sanghita Dutta, Chanlemki Lanong","doi":"10.22108/TOC.2017.20360","DOIUrl":null,"url":null,"abstract":"The annihilator graph $AG(R)$ of a commutative ring $R$ is a simple undirected graph with the vertex set $Z(R)^*$ and two distinct vertices are adjacent if and only if $ann(x) cup ann(y)$ $ neq $ $ann(xy)$. In this paper we give the sufficient condition for a graph $AG(R)$ to be complete. We characterize rings for which $AG(R)$ is a regular graph, we show that $gamma (AG(R))in {1,2}$ and we also characterize the rings for which $AG(R)$ has a cut vertex. Finally we find the clique number of a finite reduced ring and characterize the rings for which $AG(R)$ is a planar graph.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"1-11"},"PeriodicalIF":0.6000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On annihilator graph of a finite commutative ring\",\"authors\":\"Sanghita Dutta, Chanlemki Lanong\",\"doi\":\"10.22108/TOC.2017.20360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The annihilator graph $AG(R)$ of a commutative ring $R$ is a simple undirected graph with the vertex set $Z(R)^*$ and two distinct vertices are adjacent if and only if $ann(x) cup ann(y)$ $ neq $ $ann(xy)$. In this paper we give the sufficient condition for a graph $AG(R)$ to be complete. We characterize rings for which $AG(R)$ is a regular graph, we show that $gamma (AG(R))in {1,2}$ and we also characterize the rings for which $AG(R)$ has a cut vertex. Finally we find the clique number of a finite reduced ring and characterize the rings for which $AG(R)$ is a planar graph.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"6 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.20360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.20360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The annihilator graph $AG(R)$ of a commutative ring $R$ is a simple undirected graph with the vertex set $Z(R)^*$ and two distinct vertices are adjacent if and only if $ann(x) cup ann(y)$ $ neq $ $ann(xy)$. In this paper we give the sufficient condition for a graph $AG(R)$ to be complete. We characterize rings for which $AG(R)$ is a regular graph, we show that $gamma (AG(R))in {1,2}$ and we also characterize the rings for which $AG(R)$ has a cut vertex. Finally we find the clique number of a finite reduced ring and characterize the rings for which $AG(R)$ is a planar graph.