伪黎曼空间形式中各向同性子流形的Chen不等式

IF 0.4 Q4 MATHEMATICS
Marius Mi̇rea
{"title":"伪黎曼空间形式中各向同性子流形的Chen不等式","authors":"Marius Mi̇rea","doi":"10.36890/iejg.1259890","DOIUrl":null,"url":null,"abstract":"The class of isotropic submanifolds in pseudo-Riemannian manifolds is a distinguished family\nof submanifolds; they have been studied by several authors. In this article we establish Chen\ninequalities for isotropic immersions. An example of an isotropic immersion for which the equality\ncase in the Chen first inequality holds is given.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms\",\"authors\":\"Marius Mi̇rea\",\"doi\":\"10.36890/iejg.1259890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The class of isotropic submanifolds in pseudo-Riemannian manifolds is a distinguished family\\nof submanifolds; they have been studied by several authors. In this article we establish Chen\\ninequalities for isotropic immersions. An example of an isotropic immersion for which the equality\\ncase in the Chen first inequality holds is given.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/iejg.1259890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1259890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

伪黎曼流形中的一类各向同性子流形是一个特殊的子流形族;几位作者对它们进行了研究。本文建立了各向同性浸入的Chen不等式。给出了Chen第一不等式中等式成立的各向同性浸入的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chen Inequalities for Isotropic Submanifolds in Pseudo-Riemannian Space Forms
The class of isotropic submanifolds in pseudo-Riemannian manifolds is a distinguished family of submanifolds; they have been studied by several authors. In this article we establish Chen inequalities for isotropic immersions. An example of an isotropic immersion for which the equality case in the Chen first inequality holds is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信