传统与改良蛇纹石微混频器的比较研究

IF 1 Q4 ENGINEERING, CHEMICAL
Ranjitsinha R. Gidde, S. Wangikar, P. Pawar, B. Ronge
{"title":"传统与改良蛇纹石微混频器的比较研究","authors":"Ranjitsinha R. Gidde, S. Wangikar, P. Pawar, B. Ronge","doi":"10.1515/cppm-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract The study of flow and mixing dynamics for conventional micromixers as well as micromixers with split and recombine (SAR) units has been carried out using laminar and transport diluted physics modules. Initially, a pilot numerical analysis was done for the basic Y-shaped curved, rectangular and triangular serpentine micromixers. Later, SAR units have been added to these basic designs and the effect of SAR units on the performance characteristics viz., mixing index, pressure drop, performance index and pumping power has been studied. In-depth qualitative analysis was also carried out to visualize the flow and mixing dynamics for the Reynolds number in the range from 0.1–50. The study results revealed that the square shaped chambers and circular obstacle based rectangular serpentine micromixer (SCCO-RSM) demonstrated better performance as compared to the other designs. The proposed micromixer is the better candidate for microfluidics applications such as Lab-On-a-Chip (LOC), Micro-Total-Analysis-Systems (µTAS) and Point of Care Testing (POCT), etc.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"521 - 539"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study: conventional and modified serpentine micromixers\",\"authors\":\"Ranjitsinha R. Gidde, S. Wangikar, P. Pawar, B. Ronge\",\"doi\":\"10.1515/cppm-2022-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study of flow and mixing dynamics for conventional micromixers as well as micromixers with split and recombine (SAR) units has been carried out using laminar and transport diluted physics modules. Initially, a pilot numerical analysis was done for the basic Y-shaped curved, rectangular and triangular serpentine micromixers. Later, SAR units have been added to these basic designs and the effect of SAR units on the performance characteristics viz., mixing index, pressure drop, performance index and pumping power has been studied. In-depth qualitative analysis was also carried out to visualize the flow and mixing dynamics for the Reynolds number in the range from 0.1–50. The study results revealed that the square shaped chambers and circular obstacle based rectangular serpentine micromixer (SCCO-RSM) demonstrated better performance as compared to the other designs. The proposed micromixer is the better candidate for microfluidics applications such as Lab-On-a-Chip (LOC), Micro-Total-Analysis-Systems (µTAS) and Point of Care Testing (POCT), etc.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\"18 1\",\"pages\":\"521 - 539\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2022-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用层流和输运稀释物理模块,对传统微混合器和带拆分和重组(SAR)单元的微混合器的流动和混合动力学进行了研究。首先,对基本的y形弯曲、矩形和三角形蛇形微混合器进行了初步的数值分析。随后,在这些基本设计中加入了SAR单元,研究了SAR单元对混合指标、压降、性能指标和泵送功率等性能特性的影响。对0.1 ~ 50雷诺数范围内的流动和混合动力学进行了深入的定性分析。研究结果表明,矩形蛇形微混合器(SCCO-RSM)采用方形腔室和圆形障碍物设计,性能优于其他设计。所提出的微混合器是微流体应用的更好候选者,如芯片实验室(LOC),微总体分析系统(µTAS)和护理点测试(POCT)等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study: conventional and modified serpentine micromixers
Abstract The study of flow and mixing dynamics for conventional micromixers as well as micromixers with split and recombine (SAR) units has been carried out using laminar and transport diluted physics modules. Initially, a pilot numerical analysis was done for the basic Y-shaped curved, rectangular and triangular serpentine micromixers. Later, SAR units have been added to these basic designs and the effect of SAR units on the performance characteristics viz., mixing index, pressure drop, performance index and pumping power has been studied. In-depth qualitative analysis was also carried out to visualize the flow and mixing dynamics for the Reynolds number in the range from 0.1–50. The study results revealed that the square shaped chambers and circular obstacle based rectangular serpentine micromixer (SCCO-RSM) demonstrated better performance as compared to the other designs. The proposed micromixer is the better candidate for microfluidics applications such as Lab-On-a-Chip (LOC), Micro-Total-Analysis-Systems (µTAS) and Point of Care Testing (POCT), etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信