钢的腐蚀速度比较A-36覆盖着纳米ZnO叔叔2使用电阻线性极化

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Maaz Akhtar, Muhammad Imran Lashari, Muhammad Muzamil, Mohsin Sattar, Muhammad Imran Shabir, Sumiya Mohsin, Muhammad Samiuddin
{"title":"钢的腐蚀速度比较A-36覆盖着纳米ZnO叔叔2使用电阻线性极化","authors":"Maaz Akhtar, Muhammad Imran Lashari, Muhammad Muzamil, Mohsin Sattar, Muhammad Imran Shabir, Sumiya Mohsin, Muhammad Samiuddin","doi":"10.3989/revmetalm.193","DOIUrl":null,"url":null,"abstract":"El estudio se llevó a cabo para desarrollar un método optimizado de resistencia a la corrosión. El acero A-36, con bajo contenido de carbono, se utilizó con cinco recubrimientos diferentes y una probeta sin recubrir. Las probetas se recubrieron utilizando una imprimación de óxido rojo, pintura al óleo e imprimación de pintura al óleo. Dichos recubrimientos se fabricaron mezclando nanopartículas de óxido de titanio (TiO2) y óxido de zinc (ZnO) con pintura al óleo. Una solución molar de ácido nítrico (HNO3) se utilizó para obtener un medio ácido, una solución molar de hidróxido de sodio (NaOH) para conseguir un medio básico, y agua destilada para obtener un medio neutro. La técnica de resistencia de polarización lineal (LPR) se utilizó para determinar la velocidad de corrosión. En medio ácido, la probeta sin recubrimiento produjo una velocidad de corrosión máxima de 191,5 mm por año. La velocidad de corrosión disminuyó al aplicar el recubrimiento de imprimación y acabado con pintura. El valor mínimo de velocidad de corrosión (0,302 mm por año) se observó en recubrimientos a base de nanopartículas de óxido de zinc. En medio básico, se observó que la velocidad de corrosión era pequeña con todo tipo de recubrimientos y sin protección adicional, en comparación con el medio ácido. Lo que indica que el acero A-36 produce menos óxidos metálicos en medio básico. La tendencia de la velocidad de corrosión en medio básico es la misma, teniendo el máximo de velocidad de corrosión en la probeta si protección adicional (0,1044 mm por año), mientras que el mínimo se produjo con el recubrimiento a base de óxido de zinc (0,000261 mm por año). En agua destilada, la probeta sin protección adiconal produjo, como se esperaba, una velocidad de corrosión máxima de 12,98 mm por año. Al comparar los tres medios, el ambiente ácido proporciona la velocidad de corrosión más alta en probetas sin protección adicional y con todos los recubrimientos. Por lo tanto, se debe prestar atención al utilizar el acero A-36 en medio ácido. La máxima velocidad de corrosión se observó en probetas sin protección adicional, mientras que la mínima se obtuvo en probetas recubiertas con recubrimientos a base de óxido de zinc. Por tanto, se puede concluir que, para una mejor resistencia a la corrosión, se debe utilizar un recubrimiento elaborado mezclando la pintura con nanopartículas de óxido de zinc que funcione en todos los medios.","PeriodicalId":21206,"journal":{"name":"Revista De Metalurgia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparación de la velocidad de corrosión del acero A-36 recubierto con nanopartículas de ZnO y TiO 2 utilizando la resistencia de polarización lineal\",\"authors\":\"Maaz Akhtar, Muhammad Imran Lashari, Muhammad Muzamil, Mohsin Sattar, Muhammad Imran Shabir, Sumiya Mohsin, Muhammad Samiuddin\",\"doi\":\"10.3989/revmetalm.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El estudio se llevó a cabo para desarrollar un método optimizado de resistencia a la corrosión. El acero A-36, con bajo contenido de carbono, se utilizó con cinco recubrimientos diferentes y una probeta sin recubrir. Las probetas se recubrieron utilizando una imprimación de óxido rojo, pintura al óleo e imprimación de pintura al óleo. Dichos recubrimientos se fabricaron mezclando nanopartículas de óxido de titanio (TiO2) y óxido de zinc (ZnO) con pintura al óleo. Una solución molar de ácido nítrico (HNO3) se utilizó para obtener un medio ácido, una solución molar de hidróxido de sodio (NaOH) para conseguir un medio básico, y agua destilada para obtener un medio neutro. La técnica de resistencia de polarización lineal (LPR) se utilizó para determinar la velocidad de corrosión. En medio ácido, la probeta sin recubrimiento produjo una velocidad de corrosión máxima de 191,5 mm por año. La velocidad de corrosión disminuyó al aplicar el recubrimiento de imprimación y acabado con pintura. El valor mínimo de velocidad de corrosión (0,302 mm por año) se observó en recubrimientos a base de nanopartículas de óxido de zinc. En medio básico, se observó que la velocidad de corrosión era pequeña con todo tipo de recubrimientos y sin protección adicional, en comparación con el medio ácido. Lo que indica que el acero A-36 produce menos óxidos metálicos en medio básico. La tendencia de la velocidad de corrosión en medio básico es la misma, teniendo el máximo de velocidad de corrosión en la probeta si protección adicional (0,1044 mm por año), mientras que el mínimo se produjo con el recubrimiento a base de óxido de zinc (0,000261 mm por año). En agua destilada, la probeta sin protección adiconal produjo, como se esperaba, una velocidad de corrosión máxima de 12,98 mm por año. Al comparar los tres medios, el ambiente ácido proporciona la velocidad de corrosión más alta en probetas sin protección adicional y con todos los recubrimientos. Por lo tanto, se debe prestar atención al utilizar el acero A-36 en medio ácido. La máxima velocidad de corrosión se observó en probetas sin protección adicional, mientras que la mínima se obtuvo en probetas recubiertas con recubrimientos a base de óxido de zinc. Por tanto, se puede concluir que, para una mejor resistencia a la corrosión, se debe utilizar un recubrimiento elaborado mezclando la pintura con nanopartículas de óxido de zinc que funcione en todos los medios.\",\"PeriodicalId\":21206,\"journal\":{\"name\":\"Revista De Metalurgia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De Metalurgia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3989/revmetalm.193\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De Metalurgia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3989/revmetalm.193","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

进行这项研究是为了开发一种优化的耐腐蚀方法。采用低碳A-36钢,采用五种不同的涂层和一种未涂层试样。试件用红色氧化底漆、油画底漆和油画底漆涂覆。这些涂料是将氧化钛(TiO2)和氧化锌(ZnO)纳米颗粒与油画混合制成的。用硝酸(HNO3)的摩尔溶液得到酸性介质,用氢氧化钠(NaOH)的摩尔溶液得到碱性介质,用蒸馏水得到中性介质。采用线性极化电阻(LPR)技术测定了腐蚀速率。在酸性介质中,无涂层试样的最大腐蚀速率为191.5 mm /年。当涂底漆和涂漆时,腐蚀速率降低。以氧化锌纳米颗粒为基础的涂层的腐蚀速率最小(0.302 mm /年)。在碱性介质中,观察到与酸性介质相比,在各种涂层和没有额外保护的情况下,腐蚀速率较小。这表明A-36钢在碱性介质中产生的金属氧化物较少。在基本介质中腐蚀速率的趋势是相同的,如果增加保护,试样的腐蚀速率最大(0.1044 mm /年),而氧化锌涂层的腐蚀速率最小(0.000261 mm /年)。在蒸馏水中,无附加保护试样的最大腐蚀速率预期为12.98 mm /年。当比较这三种介质时,酸性环境在没有额外保护和全涂层的试样中提供了最高的腐蚀速率。因此,在酸性介质中使用A-36钢时应注意。在没有额外保护的试样中观察到最大的腐蚀速率,而在涂有氧化锌涂层的试样中观察到最小的腐蚀速率。因此,可以得出结论,为了更好地耐腐蚀,必须使用一种由氧化锌纳米颗粒混合而成的涂层,这种涂层在所有介质中都能工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparación de la velocidad de corrosión del acero A-36 recubierto con nanopartículas de ZnO y TiO 2 utilizando la resistencia de polarización lineal
El estudio se llevó a cabo para desarrollar un método optimizado de resistencia a la corrosión. El acero A-36, con bajo contenido de carbono, se utilizó con cinco recubrimientos diferentes y una probeta sin recubrir. Las probetas se recubrieron utilizando una imprimación de óxido rojo, pintura al óleo e imprimación de pintura al óleo. Dichos recubrimientos se fabricaron mezclando nanopartículas de óxido de titanio (TiO2) y óxido de zinc (ZnO) con pintura al óleo. Una solución molar de ácido nítrico (HNO3) se utilizó para obtener un medio ácido, una solución molar de hidróxido de sodio (NaOH) para conseguir un medio básico, y agua destilada para obtener un medio neutro. La técnica de resistencia de polarización lineal (LPR) se utilizó para determinar la velocidad de corrosión. En medio ácido, la probeta sin recubrimiento produjo una velocidad de corrosión máxima de 191,5 mm por año. La velocidad de corrosión disminuyó al aplicar el recubrimiento de imprimación y acabado con pintura. El valor mínimo de velocidad de corrosión (0,302 mm por año) se observó en recubrimientos a base de nanopartículas de óxido de zinc. En medio básico, se observó que la velocidad de corrosión era pequeña con todo tipo de recubrimientos y sin protección adicional, en comparación con el medio ácido. Lo que indica que el acero A-36 produce menos óxidos metálicos en medio básico. La tendencia de la velocidad de corrosión en medio básico es la misma, teniendo el máximo de velocidad de corrosión en la probeta si protección adicional (0,1044 mm por año), mientras que el mínimo se produjo con el recubrimiento a base de óxido de zinc (0,000261 mm por año). En agua destilada, la probeta sin protección adiconal produjo, como se esperaba, una velocidad de corrosión máxima de 12,98 mm por año. Al comparar los tres medios, el ambiente ácido proporciona la velocidad de corrosión más alta en probetas sin protección adicional y con todos los recubrimientos. Por lo tanto, se debe prestar atención al utilizar el acero A-36 en medio ácido. La máxima velocidad de corrosión se observó en probetas sin protección adicional, mientras que la mínima se obtuvo en probetas recubiertas con recubrimientos a base de óxido de zinc. Por tanto, se puede concluir que, para una mejor resistencia a la corrosión, se debe utilizar un recubrimiento elaborado mezclando la pintura con nanopartículas de óxido de zinc que funcione en todos los medios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista De Metalurgia
Revista De Metalurgia 工程技术-冶金工程
CiteScore
1.30
自引率
25.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Revista de Metalurgia is a bimonhly publication. Since 1998 Revista de Metalurgia and Revista Soldadura have been combined in a single publicación that conserves the name Revista de Metalurgia but also includes welding and cutting topics. Revista de Metalurgia is cited since 1997 in the ISI"s Journal of Citation Reports (JCR) Science Edition, and in SCOPUS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信