Lehmer测度对π两项类机公式的无条件适用性

S. Abrarov, R. Siddiqui, R. Jagpal, B. Quine
{"title":"Lehmer测度对π两项类机公式的无条件适用性","authors":"S. Abrarov, R. Siddiqui, R. Jagpal, B. Quine","doi":"10.3888/tmj.23-2","DOIUrl":null,"url":null,"abstract":"Lehmer defined a measure depending on numbers beta_i used in a Machin-like formula for pi. When the beta_i are integers, Lehmer's measure can be used to determine the computational efficiency of the given Machin-like formula for pi. However, because the computations are complicated, it is unclear if Lehmer's measure applies when one or more of the beta_i are rational. In this article, we develop a new algorithm for a two-term Machin-like formula for pi as an example of the unconditional applicability of Lehmer's measure. This approach does not involve any irrational numbers and may allow calculating pi rapidly by the Newton-Raphson iteration method for the tangent function.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unconditional Applicability of Lehmer’s Measure to the Two-Term Machin-like Formula for π\",\"authors\":\"S. Abrarov, R. Siddiqui, R. Jagpal, B. Quine\",\"doi\":\"10.3888/tmj.23-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lehmer defined a measure depending on numbers beta_i used in a Machin-like formula for pi. When the beta_i are integers, Lehmer's measure can be used to determine the computational efficiency of the given Machin-like formula for pi. However, because the computations are complicated, it is unclear if Lehmer's measure applies when one or more of the beta_i are rational. In this article, we develop a new algorithm for a two-term Machin-like formula for pi as an example of the unconditional applicability of Lehmer's measure. This approach does not involve any irrational numbers and may allow calculating pi rapidly by the Newton-Raphson iteration method for the tangent function.\",\"PeriodicalId\":91418,\"journal\":{\"name\":\"The Mathematica journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematica journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3888/tmj.23-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/tmj.23-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Lehmer根据类似Machin的π公式中使用的数字beta\i定义了一个测度。当beta\i是整数时,Lehmer测度可以用来确定给定的类Machin公式对pi的计算效率。然而,由于计算很复杂,当一个或多个beta_i是有理的时,尚不清楚Lehmer的测度是否适用。在本文中,我们为π的两项类Machin公式开发了一个新的算法,作为Lehmer测度无条件适用性的例子。这种方法不涉及任何无理数,并且可以通过切线函数的Newton-Raphson迭代方法快速计算pi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditional Applicability of Lehmer’s Measure to the Two-Term Machin-like Formula for π
Lehmer defined a measure depending on numbers beta_i used in a Machin-like formula for pi. When the beta_i are integers, Lehmer's measure can be used to determine the computational efficiency of the given Machin-like formula for pi. However, because the computations are complicated, it is unclear if Lehmer's measure applies when one or more of the beta_i are rational. In this article, we develop a new algorithm for a two-term Machin-like formula for pi as an example of the unconditional applicability of Lehmer's measure. This approach does not involve any irrational numbers and may allow calculating pi rapidly by the Newton-Raphson iteration method for the tangent function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信