{"title":"哈密顿环的隐次条件限定为基本独立集","authors":"Xing Huang","doi":"10.1007/s13226-023-00418-x","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":50371,"journal":{"name":"Indian Journal of Pure & Applied Mathematics","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implicit degree condition restricted to essential independent sets for Hamiltonian cycles\",\"authors\":\"Xing Huang\",\"doi\":\"10.1007/s13226-023-00418-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":50371,\"journal\":{\"name\":\"Indian Journal of Pure & Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure & Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-023-00418-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13226-023-00418-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
For a paper to be considered for publication, it is a precondition that it is not submitted for publication elsewhere and contains results that are new, significant and of interest to wide sections of the mathematical community. Editors may invite papers on special topics of current interest. All papers, whether contributed or invited, will be refereed.