真空流量:大容量

IF 1.2 3区 数学 Q1 MATHEMATICS
Miranda C. N. Cheng, G. Moore, Natalie M. Paquette
{"title":"真空流量:大容量","authors":"Miranda C. N. Cheng, G. Moore, Natalie M. Paquette","doi":"10.4310/cntp.2022.v16.n4.a4","DOIUrl":null,"url":null,"abstract":"In this note we apply mathematical results for the volume of certain symmetric spaces to the problem of counting flux vacua in simple IIB Calabi--Yau compactifications. In particular we obtain estimates for the number of flux vacua including the geometric factor related to the Calabi-Yau moduli space, in the large flux limit, for the FHSV model and some closely related models. We see that these geometric factors give rise to contributions to the counting formula that are typically not of order one and might potentially affect the counting qualitatively in some cases. We also note, for simple families of Calabi-Yau moduli spaces, an interesting dependence of the moduli space volumes on the dimension of the flux space, which in turn is governed by the Betti numbers of the Calabi-Yaus.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flux vacua: a voluminous recount\",\"authors\":\"Miranda C. N. Cheng, G. Moore, Natalie M. Paquette\",\"doi\":\"10.4310/cntp.2022.v16.n4.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we apply mathematical results for the volume of certain symmetric spaces to the problem of counting flux vacua in simple IIB Calabi--Yau compactifications. In particular we obtain estimates for the number of flux vacua including the geometric factor related to the Calabi-Yau moduli space, in the large flux limit, for the FHSV model and some closely related models. We see that these geometric factors give rise to contributions to the counting formula that are typically not of order one and might potentially affect the counting qualitatively in some cases. We also note, for simple families of Calabi-Yau moduli spaces, an interesting dependence of the moduli space volumes on the dimension of the flux space, which in turn is governed by the Betti numbers of the Calabi-Yaus.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n4.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n4.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们将某些对称空间体积的数学结果应用于简单IIB-Calabi-Yau紧致中的通量真空计数问题。特别是,对于FHSV模型和一些密切相关的模型,我们在大通量极限下获得了通量真空数的估计,包括与Calabi-Yau模量空间相关的几何因子。我们看到,这些几何因素对计数公式的贡献通常不是一阶的,在某些情况下可能会对计数产生定性影响。我们还注意到,对于Calabi-Yau模空间的简单族,模空间体积对通量空间维度的有趣依赖性,而通量空间维度又由Calabi-Yau的Betti数控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flux vacua: a voluminous recount
In this note we apply mathematical results for the volume of certain symmetric spaces to the problem of counting flux vacua in simple IIB Calabi--Yau compactifications. In particular we obtain estimates for the number of flux vacua including the geometric factor related to the Calabi-Yau moduli space, in the large flux limit, for the FHSV model and some closely related models. We see that these geometric factors give rise to contributions to the counting formula that are typically not of order one and might potentially affect the counting qualitatively in some cases. We also note, for simple families of Calabi-Yau moduli spaces, an interesting dependence of the moduli space volumes on the dimension of the flux space, which in turn is governed by the Betti numbers of the Calabi-Yaus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信