{"title":"近表面安装法改善钢筋混凝土梁的受弯性能","authors":"Hadeel S. AL-Ameedee, Hayder M. Al-Khafaji","doi":"10.1515/jmbm-2022-0070","DOIUrl":null,"url":null,"abstract":"Abstract This article presents the experimental investigations undertaken to evaluate the strengthening and enhancement characteristics of near-surface mounted (NSM) devices using different types of bars. A total of 4 concrete beams (150 mm × 300 mm × 1,500 mm) were reinforced in flexure. Three beams strengthened with different embedments of NSM (carbon fiber-reinforced polymer [CFRP], Glass fiber-reinforced polymer [GFRP], and steel) bars, and one unstrengthened beam used as a control beam were tested under monotonic static loading to determine the enhancing influence of the fiber-reinforced polymer (FRP) reinforcement. The performance of different bars used to establish the concrete is examined. A general methodology to evaluate the improving flexural behavior of RC beams strengthened with NSM–FRP bars is presented. A quantitative criterion governing debonding failure is established. The proposed bond model assumes linear elastic behavior for the concrete, adhesive, and NSM–FRP bars, following the same philosophy as the American concrete institute [ACI] provisions for bond analysis and design to control the cracks. So FRP reinforcements show substantial deformation before failure when the cross-sectional area is based on a permissible strain during service, so there is no need to check the deformability. The results of the tests show that using NSM–CFRP bars improves the flexural capacity and stiffness of the strengthened concrete beams of other types.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"31 1","pages":"701 - 709"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the flexural behavior of RC beams strengthening by near-surface mounting\",\"authors\":\"Hadeel S. AL-Ameedee, Hayder M. Al-Khafaji\",\"doi\":\"10.1515/jmbm-2022-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents the experimental investigations undertaken to evaluate the strengthening and enhancement characteristics of near-surface mounted (NSM) devices using different types of bars. A total of 4 concrete beams (150 mm × 300 mm × 1,500 mm) were reinforced in flexure. Three beams strengthened with different embedments of NSM (carbon fiber-reinforced polymer [CFRP], Glass fiber-reinforced polymer [GFRP], and steel) bars, and one unstrengthened beam used as a control beam were tested under monotonic static loading to determine the enhancing influence of the fiber-reinforced polymer (FRP) reinforcement. The performance of different bars used to establish the concrete is examined. A general methodology to evaluate the improving flexural behavior of RC beams strengthened with NSM–FRP bars is presented. A quantitative criterion governing debonding failure is established. The proposed bond model assumes linear elastic behavior for the concrete, adhesive, and NSM–FRP bars, following the same philosophy as the American concrete institute [ACI] provisions for bond analysis and design to control the cracks. So FRP reinforcements show substantial deformation before failure when the cross-sectional area is based on a permissible strain during service, so there is no need to check the deformability. The results of the tests show that using NSM–CFRP bars improves the flexural capacity and stiffness of the strengthened concrete beams of other types.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\"31 1\",\"pages\":\"701 - 709\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving the flexural behavior of RC beams strengthening by near-surface mounting
Abstract This article presents the experimental investigations undertaken to evaluate the strengthening and enhancement characteristics of near-surface mounted (NSM) devices using different types of bars. A total of 4 concrete beams (150 mm × 300 mm × 1,500 mm) were reinforced in flexure. Three beams strengthened with different embedments of NSM (carbon fiber-reinforced polymer [CFRP], Glass fiber-reinforced polymer [GFRP], and steel) bars, and one unstrengthened beam used as a control beam were tested under monotonic static loading to determine the enhancing influence of the fiber-reinforced polymer (FRP) reinforcement. The performance of different bars used to establish the concrete is examined. A general methodology to evaluate the improving flexural behavior of RC beams strengthened with NSM–FRP bars is presented. A quantitative criterion governing debonding failure is established. The proposed bond model assumes linear elastic behavior for the concrete, adhesive, and NSM–FRP bars, following the same philosophy as the American concrete institute [ACI] provisions for bond analysis and design to control the cracks. So FRP reinforcements show substantial deformation before failure when the cross-sectional area is based on a permissible strain during service, so there is no need to check the deformability. The results of the tests show that using NSM–CFRP bars improves the flexural capacity and stiffness of the strengthened concrete beams of other types.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.